
Interactive Grid Generation for Computational Fluid
Dynamics in Flow Domains of Complex Geometry

Ahmed Sadek Mohamed Tawfik

April 1, 2015

ABSTRACT

The thesis presents, in detail, an interactive computer program developed for
creating quadrilateral and hexahedral grids for Computational Fluid Dynamics
(CFD) applications. The program relies heavily on interaction with the user in
a sophisticated visual graphical environment.

The software package is based on the block structured concept where the flow
domain is divided into sub-domains. A structured grid is created in each sub-
domain and the sub-domains are all connected in the final grid. The program
allows the user to have full control on the grid parameters necessary for obtaining
numerically stable, bounded, and accurate solution of the governing equations,
namely the grid spacing, intensity, orthogonality, and smoothness.

The package also allows the user to easily define a multitude of boundary sur-
faces and conditions to the final three-dimensional grid generated, these include
inlets, outlets, planes of symmetry, baffles, etc. The package also featured the
ability to export the grid data to files compatible with some commercial CFD
packages formats.

The program was applied to generate grids in geometries of increasing com-
plexity from the straight pipe, to the poppet valve duct of an internal combustion
engine, a composite valve assembly and the rotor of a centrifugal pump among
other cases. The sequences of grid generation, presented in chapter seven, for
these cases demonstrated the power, flexibility, and speed with which the three-
dimensional grids were created and the ease with which the boundary surfaces
were defined.

ACKNOWLEDGEMENTS

A very special gratitude goes to Professor Ashraf M. Y. Ahmed for his work as my advisor
and mentor in understanding the CFD Grids and his extensive support in teaching me
the fundmentals of geometry. Second gratitude goes to Professor Ayman El Baz for his
continuous encouragement during finishing this work.

Last, but not least, I thank my parents for the sacrifices they borne to ensure the fulfill-
ment of my dreams.

CONTENTS

CHAPTER I INTRODUCTION 1
1.1 BACKGROUND . 1

1.1.1 Elements of CFD Packages . 3
1.1.1.1 Pre-Processor . 3
1.1.1.2 Solver . 4
1.1.1.3 Post-Processor . 4

1.2 MOTIVATION . 5
1.3 THESIS OBJECTIVES . 5
1.4 THESIS LAYOUT . 6

CHAPTER II REVIEWOFGRID TYPES ANDGENERATION TECH-
NIQUES 7

2.1 INTRODUCTION . 7
2.2 GRID TYPES AND CLASSIFICATIONS 8

2.2.1 Structured Grids . 8
2.2.1.1 Coordinate Grids . 10
2.2.1.2 Boundary-Fitted Grids . 10
2.2.1.3 Shape of Computational Domains 11
2.2.1.4 Stretching Methods . 12
2.2.1.5 Structured grid generation overview 12

2.2.2 Block Structured Grids . 14
2.2.3 Unstructured Grids . 15
2.2.4 Overset (Chimera) Grids . 16
2.2.5 Hybrid Grids . 17

2.3 AUTOMATIC GRID GENERATION . 17
2.3.1 Mapping Transformation . 17

2.3.1.1 Transfinite Interpolation . 17
2.3.1.2 Elliptic Generators . 18
2.3.1.3 Hyperbolic Generators . 20

2.3.2 Grid Superposition . 21
2.3.3 Geometric Decomposition . 22
2.3.4 Transformation From Triangular Meshes 22
2.3.5 Advancing Front Method . 23

i

2.4 MESHLESS METHODS . 23
2.5 SUMMARY . 24

CHAPTER III COMPUTATIONAL FLUID DYNAMICS AND COM-
PUTATIONAL GRIDS 25

3.1 INTRODUCTION . 25
3.2 THE GOVERNING EQUATIONS . 26
3.3 FINITE VOLUME DESCRITIZATION OF THE GOVERNING EQUATIONS 28
3.4 THE COMPUTATIONAL GRID . 31

3.4.1 Desired Properties of Computational Grid 31
3.5 CONCLUSIONS . 34

CHAPTER IV MANIFOLDS AND HOMOTOPY 35
4.1 INTRODUCTION . 35
4.2 TOPOLOGICAL SPACES . 35
4.3 MANIFOLDS . 35
4.4 HOMOTOPY . 36

4.4.1 Homotopy of Functions . 36
4.5 BEZIER CURVES . 37

4.5.1 Generalization . 37
4.5.1.1 Linear Bézier Curves . 39
4.5.1.2 Quadratic Bézier Curves . 39
4.5.1.3 Cubic Bézier Curves . 40

4.5.2 Cubic Bezier Curve Solution . 40
4.6 TRANFORMATION OF CIRCULAR ARCS INTO BEZIER ARCS 42

4.6.1 Analytical Method . 42
4.6.2 Numerical Method . 44

4.7 CONCLUSIONS . 45

CHAPTER V COMPUTER GRAPHICS PROGRAMMING 47
5.1 INTRODUCTION . 47

5.1.1 OpenGL as A State machine . 48
5.1.2 OpenGL Rendering Pipeline . 48

5.2 GRAPHICAL OBJECT MODEL . 51
5.2.1 Graphical Model Naming . 52
5.2.2 Picking Viewport Models . 52
5.2.3 Models Interactive Operations . 54

5.3 MODEL SNAPPING OPTIONS . 56
5.3.1 Snapping Options Calculations . 57
5.3.2 Line Segment . 58
5.3.3 Circle . 59
5.3.4 Bezier Curve . 60

ii

5.3.5 Circular Arc . 61
5.4 CONCLUSIONS . 62

CHAPTER VI GRIDDING ALGORITHMS AND OPERATIONS 63
6.1 INTRODUCTION . 63
6.2 TWO-DIMENSIONAL GRIDDING OPERATIONS 63

6.2.1 Linear Gridding . 64
6.2.2 Homotopy and Gridding Operations 65
6.2.3 Enhanced Homotopy Gridding . 68
6.2.4 Gridding Techniques Comparison . 69
6.2.5 Contracting / Stretching Function . 70
6.2.6 Circle Gridding . 71
6.2.7 Edge Senses and Coding . 72

6.3 CONNECTIVITY BETWEEN QUADRILATERAL SHAPES 74
6.3.1 Discovery of Neighbours . 74
6.3.2 Grouping . 74
6.3.3 Gridding between Neighbours . 74

6.4 THREE DIMENSIONAL GRIDS . 76
6.4.1 Extrusion Operation . 76
6.4.2 Revolve Operation . 77
6.4.3 Auxilary Operations . 78

6.4.3.1 Twisting Operation . 78
6.4.3.2 Scaling Operation . 79

6.4.4 Axisymmetric Operation . 79
6.5 CONCLUSIONS . 81

CHAPTER VII PROGRAM STRUCTURE AND CASE STUDIES 83
7.1 INTRODUCTION . 83

7.1.1 Program Structure and Layout . 84
7.1.2 Ribbon Menu Bar . 84
7.1.3 Operations Area . 85

7.1.3.1 Viewport and Models Windows 86
7.1.3.2 Properties Window . 87
7.1.3.3 Cell Properties Window . 87
7.1.3.4 Grid Properties . 88

7.1.4 Task Bar Area . 88
7.2 PROGRAM MENUS . 89

7.2.1 File Menu . 89
7.2.2 Home Menu . 90

7.2.2.1 2D Sketching . 90
7.2.2.2 Parametric Sketching . 90

iii

7.2.2.3 Air Foil . 90
7.2.2.4 Plane Image . 91

7.2.3 Viewport Menu . 92
7.2.3.1 Viewport Movement . 92
7.2.3.2 Base Drawing Plane . 92

7.2.4 2D Gridding Menu . 93
7.2.4.1 Gridding Sequence . 94

7.2.5 Extrusion Menu . 95
7.2.5.1 Basic Extrusion Processes 95
7.2.5.2 Profile Extrusion . 96
7.2.5.3 Equation Extrusion . 97

7.2.6 Revolving Menu . 97
7.2.6.1 Basic Operations . 98
7.2.6.2 Axisymmetric Revolve . 98

7.2.7 Boundaries Menu . 99
7.2.8 Post-Gridding Menu . 100

7.3 CASE STUDIES . 100
7.3.1 Simple Cases . 100

7.3.1.1 Rectangular Duct with Baffle and 90◦ Bend 100
7.3.1.2 Straight Pipe I . 103
7.3.1.3 Straight Pipe II . 105
7.3.1.4 S Shape Pipe . 107

7.3.2 Composite Cases . 109
7.3.2.1 Axisymmetric Sudden Expansion-Contraction 109
7.3.2.2 Bank of Tubes . 110
7.3.2.3 Hydro Cyclone . 112
7.3.2.4 Internal Combusion Engine Poppet Valve 119
7.3.2.5 Composite Valve . 122
7.3.2.6 Pump rotor . 128

7.4 EXPORTING GRID FILE . 131

CHAPTER VIII CONCLUSIONS AND RECOMMENDATIONS 133
8.1 CONCLUSIONS . 133
8.2 RECOMMENDATIONS FOR FUTURE WORK 133

LIST OF REFERENCES 135

APPENDIX A REVIEW OF DIFFERENTIAL AND INTEGRAL CAL-
CULUS IN GENERAL CURVILINEAR COORDINATES 141

A.1 INTRODUCTION . 141
A.2 CURVILINEAR COORDINATES . 142

A.2.1 Base Vectors . 143

iv

A.2.1.1 Transformation Equation 144
A.2.1.2 Covariant Base Vectors . 144
A.2.1.3 Contravariant Base Vectors 145
A.2.1.4 Jacobian Matrix . 145
A.2.1.5 Gradient Operator in General Curvilinear Coordinates . . . 145
A.2.1.6 Representaion of Vector Components 146

A.2.2 Metric Tensor . 146
A.2.2.1 Transformation with Metric Tensors 147

A.2.3 Christoffel Symbols . 148
A.2.3.1 Second Kind Christoffel Symbols 150
A.2.3.2 Covariant Derivative . 150

A.2.4 Div, Gradient, and Curl . 151
A.3 ORTHOGONAL CURVILINEAR COORDINATES 152

A.3.1 Covariant Basis . 152
A.3.2 Contravariant Basis . 153
A.3.3 Dot Product . 154
A.3.4 Cross Product . 155
A.3.5 Differentiation . 155
A.3.6 Differential Operators . 157

APPENDIX B GEOMETRY AND OBJECT ORIENTED PROGRAM-
MING 159

B.1 INTRODUCTION . 159
B.2 OBJECT ORIENTATION CONCEPTS . 159

B.2.1 Objects . 160
B.2.2 Classes . 160
B.2.3 Inheritance . 161
B.2.4 Polymorphism . 162
B.2.5 Operator Overloading . 162

B.3 GEOMETRICAL AND MATHEMATICAL TYPES 163
B.3.1 General Vector . 164

B.3.1.1 General Vector Properties 166
B.3.1.2 General Vector Overloaded Operators 167

B.3.2 Plane . 168
B.3.3 Quadrilateral . 169
B.3.4 Angle . 173
B.3.5 Quaternion . 174
B.3.6 Matrix . 175

B.4 GRAPHICAL MODELING CLASSES . 178
B.4.1 Space Point . 178
B.4.2 Space Line . 179

v

B.4.3 Line Strip . 179
B.4.4 Space Bezier Curve . 181
B.4.5 Space Circle . 183
B.4.6 Space Arc . 184
B.4.7 Quadrilateral Space . 186

B.4.7.1 Quadrilateral Space Grid 186
B.4.8 Quadrilateral Cell Element . 187
B.4.9 Hexahedron Cell Element . 187

APPENDIX C PROGRAM LISTINGS OF IMPORTANT ALGORITHMS189
C.1 CURVE ALGORITHMS . 189

C.1.1 Approximation of Circular Arc to Bezier Curve 189
C.2 GRIDDING ALGORITHMS . 190

C.2.1 Homotopy Between Two Opposite Curves in Quadrilateral Shape . . 190
C.2.2 Concentration Stretching Function 191
C.2.3 Senses Coding Listing . 193
C.2.4 Neighbour Quadrilateral Shapes Discovery 193
C.2.5 Grouping Algorithm . 193

LIST OF FIGURES

Figure 1.1 Multi Gridded Samples I . 1
Figure 1.2 Multi Gridded Samples II . 1
Figure 1.3 Rectilinear Grids in Irregular Geometry 2

Figure 2.1 Cylindrical Structured Grid . 9
Figure 2.2 Boundary-conforming quadrilateral grid 11
Figure 2.3 Boundary Conforming Triangular Grid 12
Figure 2.4 Computational Domains adjusted to the Physical Domains 12
Figure 2.5 Block-Structured Grid . 14
Figure 2.6 Unstructured Hybrid Grid . 16
Figure 2.7 Overset Grid . 16
Figure 2.8 Hybrid Grid . 17
Figure 2.9 Transfinite Interpolation and Laplace Scheme 19
Figure 2.10 Hyperbolic Grid . 21
Figure 2.11 Meshless discretization framework 24

Figure 3.1 Stress Tensor Components . 27
Figure 3.2 Control Volume for the Two-Dimensional Situation 30

vi

Figure 3.3 Definition of grid expansion and aspect ratios 33
Figure 3.4 Definition of grid smoothness . 33

Figure 4.1 Homotopy of Functions . 37
Figure 4.2 Quadratic Bezier Curve . 38
Figure 4.3 Cubic Bezier Curve . 38
Figure 4.4 Quartic Bezier Curve . 39
Figure 4.5 Bezier Curve From Circle Arc . 42
Figure 4.6 Bezier Curve From Two points on Circle 44
Figure 4.7 Approximation of Circular Arc to Bezier Curve 45

Figure 5.1 OpenGL 1.1 Pipe Line . 49
Figure 5.2 Back Buffer (Color Naming View) 53
Figure 5.3 Presented Buffer User View . 54
Figure 5.4 Highlighted Inner Circle. 54
Figure 5.5 Highlighted Outer Circle . 55
Figure 5.6 Thick Shapes in Selection Buffer as seen by mouse. 55
Figure 5.7 Normal Shapes in Presented Buffer as seen by user. 56
Figure 5.8 Nearest Point Snapping . 56
Figure 5.9 Snapping to first, and last points of the curve 57
Figure 5.10 Middle Point Snapping . 57
Figure 5.11 Nearest Calculation for Line Segment 58
Figure 5.12 Circle Tanget Snapping . 59
Figure 5.13 Bezier Curve Nearest Point . 60
Figure 5.14 Bezier Curve Nearest Point Suggested Locations 61
Figure 5.15 Arc Snapping Calculation . 61

Figure 6.1 Partioned Flow Domain . 64
Figure 6.2 Empty and Gridded Quadratic Shape 64
Figure 6.3 Linear Gridding . 65
Figure 6.4 Overlapping of Straight Lines . 65
Figure 6.5 Two Un-adjusted Curves at 0.1, and 0.9 between Top and Bottom

Curves . 66
Figure 6.6 Two adjusted curves at 0.1, and 0.9 between Top and Bottom Curves 66
Figure 6.7 All adjusted curves (a), and (c), in quadratic shape 67
Figure 6.8 Transversal Points Calculation . 67
Figure 6.9 Enhancing intermediate curves smoothness 68
Figure 6.10 Enhanced Homotopy by Middle Points Transformation 69
Figure 6.11 Top and Bottom Single Stretched Function 70
Figure 6.12 Left and Right Single Stretched Function 70
Figure 6.13 Double stretched function on quadratic cell 71
Figure 6.14 Circle Gridding . 72

vii

Figure 6.15 The effect of sense deformation . 72
Figure 6.16 Quadratic Cell Senses of Upper Points 73
Figure 6.17 Five Connected shapes with 6x6 cells 75
Figure 6.18 Five Connected Shapes. B, C, and D shapes gridded as 6x20 cells . 75
Figure 6.19 Five Connected Shapes A,C, and E Shapes are vertically densed grid-

ded. 76
Figure 6.20 Extrusion Operation . 77
Figure 6.21 Revolve Operation around y-axis of a gridded circle 78
Figure 6.22 Extrusion with Twising . 78
Figure 6.23 Geometry Double Scaling . 79
Figure 6.24 Two Dimensional Grid on x-axis . 80
Figure 6.25 First Column Grid Face . 80
Figure 6.26 Axisymmetric Grid . 81

Figure 7.1 Software Main Screen . 83
Figure 7.2 Ribbon Menu Bar . 84
Figure 7.3 Operation Area . 85
Figure 7.4 Opeartion Full Area Sides . 86
Figure 7.5 Viewport and Models windows . 86
Figure 7.6 Model Properties Window . 87
Figure 7.7 Cell Properties Window . 87
Figure 7.8 Grid Properties Window . 88
Figure 7.9 Task Bar Area . 89
Figure 7.10 File Menu . 89
Figure 7.11 Home Menu . 90
Figure 7.12 Air Foil Profiles . 91
Figure 7.13 Drawing Grid Plane Image . 91
Figure 7.14 Viewport Menu . 92
Figure 7.15 Clipping along x-axis (yz-plane) . 93
Figure 7.16 2D Gridding Menu . 93
Figure 7.17 Single Grid Generated from 4 Point, and 3 Point Buttons. 94
Figure 7.18 Grid Creation Sequence . 94
Figure 7.19 Selecting the container of the grouped grids. 95
Figure 7.20 Extrusion Menu . 95
Figure 7.21 Profile Extrude Process . 96
Figure 7.22 Radial Profile Extrude . 97
Figure 7.23 Extrude by equation 10sin (r/5) + 40 97
Figure 7.24 Revolving Menu . 97
Figure 7.25 Clone Revolve with angle 360 degree and 8 segments 98
Figure 7.26 Axisymmetric Revolve . 99
Figure 7.27 Boundaries Menu . 100

viii

Figure 7.28 Post Gridding Menu . 100
Figure 7.29 Empty and Gridded Domain . 101
Figure 7.30 Bending Duct Operations . 101
Figure 7.31 Second Extrusion Operation . 102
Figure 7.32 Duct Baffle . 102
Figure 7.33 Duct Boundaries Definition . 103
Figure 7.34 Straight Pipe Sketch Initial Steps 104
Figure 7.35 Pipe Gridded Cross-Section . 104
Figure 7.36 Straight Pipe from Basic Extrusion 104
Figure 7.37 Straight Pipe with 90◦ Bending . 105
Figure 7.38 Schematic of an Axisymmetric Pipe 105
Figure 7.39 Axisymmetric Pipe Cross-Section 106
Figure 7.40 Axisymmetric Straight Pipe Grid 107
Figure 7.41 Definition of Boundary Conditions 107
Figure 7.42 S Shape Pipe Grid Modeling Operations 108
Figure 7.43 Sudden Expansion / Contraction Cross-Section 109
Figure 7.44 Sudden Expansion Contraction Sub-domains 109
Figure 7.45 Sudden Expansion Contraction Gridded 109
Figure 7.46 Expansion Contraction Grid . 110
Figure 7.47 Definition of Bonudary Conditions 110
Figure 7.48 Bank of Tubes . 110
Figure 7.49 Gridded Bank of Tubes . 111
Figure 7.50 Extruded Bank of Tubes . 111
Figure 7.51 Hydro Cyclone Schematic Diagram 112
Figure 7.52 Cyclone Sketching and Sub-Domains 113
Figure 7.53 Cyclone Cross-Section Completely gridded 114
Figure 7.54 Cyclone First Extrusion Process . 114
Figure 7.55 Cyclone Second Extrusion Process 115
Figure 7.56 Cyclone Third Extrusion Process . 115
Figure 7.57 Cyclone Fourth Extrusion Process 116
Figure 7.58 Cyclone Fifth Extrusion Process . 116
Figure 7.59 Cyclone Lower Part Sub-domains 117
Figure 7.60 Cyclone Lower Part Gridded . 117
Figure 7.61 Cyclone Lower Part First Extrusion 118
Figure 7.62 Final Hydro Cyclone Mesh . 118
Figure 7.63 Poppet Valve Profile and Sub-domains 119
Figure 7.64 Poppet Valve Grid . 119
Figure 7.65 Poppet Upper Sketch with sub-domains 120
Figure 7.66 Poppet Upper Part Gridded . 121
Figure 7.67 Poppet Valve 3D Mesh . 121

ix

Figure 7.68 Poppet Valve Grid Cross Section . 122
Figure 7.69 Isometric Valve Seat at Middle . 122
Figure 7.70 Isometric Valve Closed by Axial Plug 123
Figure 7.71 Isometric Valve Closed by Annulus Plug 123
Figure 7.72 Valve Seat at Middle Cross-Section 124
Figure 7.73 Valve Closed by Axial Plug Cross-Section 124
Figure 7.74 Valve Closed by Annulus Plug Cross Section 124
Figure 7.75 Middle Valve Seat Sub-domains . 124
Figure 7.76 Middle Valve Seat Gridded . 125
Figure 7.77 Middle Valve Seat Axysimmetric Revolve 125
Figure 7.78 Valve Left Axial Plug Sub-domains 125
Figure 7.79 Valve Left Axial Plug Gridded . 125
Figure 7.80 Valve Left Axial Plug Axysimmetric Revolve 126
Figure 7.81 Valve Left Axial Plug Close View 126
Figure 7.82 Valve Right Annulus Plug Sub-domains 126
Figure 7.83 Valve Right Annulus Plug Gridded 127
Figure 7.84 Valve Right Annulus Plug Axysimmetric Revolve 127
Figure 7.85 Valve Right Annulus Plug Close View 127
Figure 7.86 Pump Rotor Sketch . 128
Figure 7.87 Pump Rotor Sub-domains . 128
Figure 7.88 Pump Rotor Grid . 129
Figure 7.89 Extrude Line Profile . 129
Figure 7.90 Pump Rotor Profile Extrusion . 130
Figure 7.91 OpenFOAM Case Structure . 131

Figure A.1 Common Coordinate Systems. 141
Figure A.2 Homogeneous coordinates. 142
Figure A.3 Orthogonal and Non-Orthogonal Curvilinear Coordinates. 142
Figure A.4 Covariant base vectors at point P in 3D 143
Figure A.5 Orthogonal Coordinates . 152

Figure C.1 Partial Gridded Geometry . 195
Figure C.2 Fully Gridded Geometry . 196

LIST OF TABLES

3.1 Definition of Quantities in Eq. (3.8) . 28

6.1 Gridding Techniques Comparison . 69

x

NOMENCLATURE

[ij, k] Second Kind Christoffel Symbols

δji Kronecker delta

η Natural Coordinate

Γkij Christoffel Symbols

T Stress Tensor

ei Contravariant base vectors

ei Covariant base vectors

J Jacobian matrix

r Position vector

V Velocity vector

ρ Fluid Density

ξ Natural Coordinate

gij Contravariant metric tensor

gij Covariant metric tensor

hi Scale factors

ri Contravariant vector components

ri Covariant vector components

xi

ABBREVIATIONS

CFD Computational Fluid Dynamics

CAE Computer Aided Engineering

CAD Computer Aided Design

OpenGL Open Graphics Library

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

PDE Partial Differential Equation

xiii

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

Computational Fluid Dynamics (CFD) is a complex task that has always been considered
as a workflow consisting of many processes. Each process has its unique algorithms, tools,
and applications. The available techniques used by CFD applications cannot be adopted
without the existence of a computaional grid that fills the flow domain inside and/or outside
the flow domain under study. Fulfilling this important requirement led to many attempts in
writing software packages to acheive just that [1, 2, 3]. The computational cells have to be
connected with each other, covering all the empty space, and with definite boundaries that
hold the initial fluid properties that will be carried through the solution process as shown in
Figs. (1.1-1.2).

Figure 1.1: Multi Gridded Samples I[4]

Figure 1.2: Multi Gridded Samples II[5]

Early CFD applications were mainly carried out on simple rectilinear grids. This had

1

the advantage of simpler governing equations and more robust solution algorithms. On the
other hand, these grids failed to simulate flow domains of complex geometry with reasonable
degree of accuracy despite the fact that such complex geometry flow conditions represent
the majority of engineering applications. Figure (1.3) illustrates two such rectilinear grids
with varying degrees of approximations.

Figure 1.3: Rectilinear Grids in Irregular Geometry[6]

The first efforts concerned with the development of grid techniques were undertaken in the
1960s with significant number of advanced methods being created: algebraic, elliptic, hy-
perbolic, parabolic, variational, Delaunay, advancing-front, etc. These methods reached a
stage where calculations in fairly complicated multi-dimensional domains became possible.
Because of its successful development, the field of numerical grid generation has already
formed a separate mathematical discipline with its own methodology, approaches, and tech-
nology.

In the mid 1980’s serious attention was directed towards casting the governing equations
in coordinate free form in preparation for discretization over non-orthogonal curvilinear
grids covering complex geometry flow domains[7, 1]. The methodolgy required algorithms
for generating the computational grid that were simple for testing accuracy, convergence,
and stability of the proposed solution techniques. At the time, these algorithms were simple,
cumbersome, and offered very little control over the generated grid from the computational
view point.

At the end of the 1980s there started a new stage in the development of grid genera-
tion techniques. It is characterized by the creation of comprehensive, multipurpose, three-
dimensional grid generation codes which aimed at providing a uniform environment for the
construction of grids in arbitrary multidimensional geometries. Despite these efforts, grid
generation remains a major obstacle in CFD workflow and the most demanding process in
terms of effort and time. The review of NASA[8] on the future of CFD in aeroscience in the
near future till 2030 states “Today, the generation of suitable meshes for CFD simulations
about complex configurations constitutes a principal bottleneck in the simulation workflow
process.” . The review also states in conclusion “Given a suitable geometry representation
and a desired level of solution accuracy, a fully automated meshing capability would con-
struct a suitable mesh and adaptively refine this mesh throughout the solution process with
minimal user intervention until the final accuracy levels are met.”

2

This objective at the present time seems a long way to reach though efforts in this
direction are already being made as further detailed in Chapter II.

1.1.1 Elements of CFD Packages

CFD codes are structured around the numerical algorithms that can tackle fluid flow prob-
lems. In order to provide easy access to their solving power, all commercial CFD packages
include sophisticated user interfaces to input problem parameters and to examine the results.
Hence all codes contain three main elements:

• Pre-processor

• Solver

• Post Processor

In the following, the function of each of these elements within the context of a CFD code is
briefly discussed.

1.1.1.1 Pre-Processor

Pre-Processing consists of the input of a flow problem to a CFD program by means of an
operator-friendly interface and subsequent transformation of this input into a form suitable
for use by the solver. The user activities are the pre-processing stage involve:

• Definition of the geometry of the region of interest: the computational domain.

• Grid generation the sub-division of the domain into a number of smaller, non-overlapping
sub-domains: a grid (or mesh) of cells (or control volumes or elements).

• Selection of the physical and chemical phenomena that need to be modeled.

• Definition of fluid properties.

• Specification of appropriate boundary conditions at cells which coincide with or touch
the domain boundary.

The solution to a flow problem (velocity, pressure, temperature etc.) is defined at nodes
inside each cell. The accuracy of a CFD solution is governed by the number of cells in the
grid. In general, the larger the number of cells the better the solution accuracy. Both the
accuracy of a solution and its cost in terms of necessary computer hardware and calculation
time are dependent on the fineness of the grid. Optimal meshes are often non-uniform:
finer in areas where large variations occur from point to point and coarser in regions with
relatively little change. Efforts are under way to develop CFD codes with a (self) adaptive
meshing capability. Ultimately such programs will automatically refine the grid in areas
of rapid variations. A substantial amount of basic development work still needs to be done

3

before these techniques are robust enough to be incorporated into commercial CFD codes. At
present it is still up to the skills of the CFD user to design a grid that is suitable compromise
between desired accuracy and solution cost.

Over 70% of the time spent in industry on a CFD project is devoted to the definition
of the domain geometry and grid generation. In order to maximize productivity of CFD
personnel all the major codes now include their own CAD-style interface and/or facilities to
import data from proprietary surface modelers and mesh generators.

1.1.1.2 Solver

The solver solves the governing equations to obtain the field values for the flow variables. To
do so the equation must be cast in a form suitable for the solution methodology adopted.

There are three distinct methods of numerical solution techniques: Finite Difference
Method, Finite Element Method and Spectral Methods. In outline, the numerical methods
that form the basis of the solver perform the following steps:

• Approximation of the unknown flow variables by means of simple functions.

• Discretisation by substitution of the approximations into the governing flow equations
and subsequent mathematical manipulations.

• Solution of the algebraic equations.

The main differences between the three separate methods are associated with manner in
which the flow variables are approximated and with the discretisation processes.

1.1.1.3 Post-Processor

As in pre-processing, a huge amount of development work has taken place in the post-
processing field. Due to the increased popularity of workstations computers, many of which
have outstanding graphics capabilities. These include:

• Domain geometry and grid display

• Vector plots

• Line and shaded contour plots

• 2D and 3D surface plots

• Particle tracking

• View manipulation (translation, rotation, scaling etc.)

More recently these facilities have also include animation for dynamic result display and in
addition to graphics all codes produce trusty alphanumeric output and have data export
facilities for further manipulation external to the code. As many other branches of CAE
(Computer Aided Engineer) packages, the graphics output capabilities of CFD codes have
revolutionized the communication of ideas to the non-specialist.

4

1.2 MOTIVATION

As was noted above, the computational grid represents a corner stone and bottleneck in any
CFD process. Grid generation proved to be the most demanding stage in terms of effort
and time on the users side. There is a variety of techniques for grid generation, that range
from algebraic to numerical solutions of a set of equations combined to yield the desired
computational grid. Even though the founding concepts have been documented in research
papers, periodicals, and text books, there is scarcely any publications on how these methods
can be implemented into an integrated software package that actually runs and gives results.

Implementing and documenting the know-how of creating computational grids, permits
CFD researchers to go through a more complex scenarios in the future. The latest NASA
report on the future of CFD within the next fifteen years [8] clearly sets the goal for the de-
sired development of grid generation techniques to overcome the current difficulties detailed
earlier.

Although the current commercial codes and software packages allow many types of auto-
matic grid generation, the process still needs a lot of interaction from the user to remove the
unnecessary model parts and to ensure a grid quality that guarantees solver accuracy, stabil-
ity, and economy. To reach such ultimate goal, the underling mathematical foundations and
algortihms have to be fully understood and implemented using current programming tools
and made ready for scalability to the next generations of computer hardware. The present
study has, thus, been motivated by the urge for more comperhensive and practical imple-
mentation of theoretical concepts of grid generation into efficient, flexible, and easy-to-use
grid generator, intended primarily for CFD developers.

1.3 THESIS OBJECTIVES

Most of grid generation packages available today are in-house projects or as part of commer-
cial codes and, as such, are inaccessible to CFD research communities at large. Accordingly,
there is no clear documented way of how to create such a software from scratch. The main
objective of this study is to introduce a new software that is capable of generating computa-
tional grids in a graphical interactive three-dimensional environment. The software user is
expected to build the geometry of the flow domain and the grid at the same time avoiding
redundant effort and contradicting strategies. A distinguished feature of this software is that
it offers the user the ability to build the grid based on his experience in CFD to ensure a grid
that acheives the main requirements for the solver, namely stability, accuracy and economy.

Some of the widely adopted gridding techniques rely on partitioning the flow domain into
quadrilateral and triangular cells as further shown in detail in Chapter II. The generated
grid is always a mix of triangular and quadrilateral cells (in case of 2 dimensional space) or
tetrahedral and hexahedral cells (in case of 3 dimensional space). The solver, for this type
of mixed cell configuration must be capable of transferring its solution and descretization
methodology between the two types of cells. The generated grids of these techniques are

5

called hexahedral dominant or tetrahedral dominant according to the major distribuion of
the one of the cell types.

Although hybrid grids are being well established and used in commercial codes, the im-
pact is always reflected on the solver ability to give accurate results for these grids. Whenever
there is a performance drop and/or slow convergent, the computational grid is usually to
blame for the defficencies. In the present study, this hybrid grid approach is avoided and
focus is made on quadrilateral and hexahedral grids only as further detailed in Chapter II.

The software developed is intended to handle flow domains of complex geometry of any
shape. The code should also be able to export files containing grid properties and geomet-
rical quantities in a format readable by commercial packages. In order to acheive efficient
performance, the developed program uses state of the art programming tools and takes
advantage of GPU (Graphical Processing Unit), asynchronous programming, parallel, and
vector processing.

1.4 THESIS LAYOUT

In Chapter II a review of the computational gird types and their generation techniques is
presented.

Chapter III presents a concise review of the fundmentals of CFD with emphasis on the
grid properties essential for stable and accurate solution of the flow governing equations.

Manifolds and homotopy are discussed in chapter IV. The basic concept have been exten-
sively used in the methods adopted throughout development of the present grid generator.

Chapters V, and VI detail graphics programming, algorithms, and operations used in the
present work in writing the grid generator package.

The grid generator algorithm is examined in detail in Chapter VII. The modeling and
grid generation commands are explained with simple examples. The objective intended here
is to aid the user in mastering the program and properties of generated grid. The results
of the present study are presented also in chapter VII in the form of case studies on grid
generation using the developed software. The cases examined began with the simplest of
geometries (straight pipe) and moved to a more complex cases and ended with a poppet
valve of internal combustion engines and the rotor of a centrifugal pump.

Conclusions and Recommendations are given in chapter VIII.
Three appendices A, B, and C are also included in the thesis. Appendix A, represents

an easy reference for the basics of differential and integral calculus in general curvilinear
coordinates. This is essential for understanding basic grid generation operations in geneal
cuvilinear coordinates and subsequent algorithms.

Object Oriented Programming (OOP) details are presented in Appendix B while Ap-
pendix C contains listing of the important source code modules.

6

CHAPTER II

REVIEW OF GRID TYPES AND GENERATION
TECHNIQUES

2.1 INTRODUCTION

Mesh generation is a corner stone in any CFD analysis. The grid must satisfy a number of
geometric constraints as well as physical requirements to ensure stable and accurate solution.
In complex geometry domains, grid generation becomes a formidable task in terms of effort
and time. In such cases mesh generation algorithms have demanded an increasing level of
automation in order to reduce the time consumed in this process. One of the first automatic
methods used for quadrilateral mesh generation generated structured meshes and required
domains with simple geometric shapes that could be mapped to Cartesian natural coordinate
systems. The predominance of this method can be clearly noted in [9]. This technique is still
widely used in commercial packages that take advantage of the relatively easy computational
implementation of the method to shorten the pre-processing time. Commonly referred to
as algebraic mesh generation or transfinite interpolation, the method performs the mapping
transformation between the natural and physical domains by interpolating, with blending
functions, the curves that define the physical boundaries [10, 11]. This transformation can
use more complex schemes whenever smoother meshes with good control of the aspect ratio
of their elements are desired. For this purpose, elliptic generators are used [12, 13]. In
general, these approaches achieve the final mesh by applying an iterative routine to an
existing algebraic mesh.

Unstructured mesh generators have also been used to automatically construct quadrilat-
eral meshes. These methods require more complex algorithms to be implemented; however,
they lend themselves to mesh in general geometries. Grid superposition, also known as
quadtree, has been used to generate all-quadrilateral meshes. It consists of overlaying a
uniform grid of points over the entire domain and properly connecting them to generate the
mesh [14, 15]. Transformation from triangles is itself another method. Roughly speaking,
the method combines two or more triangles and/or subdivides them to obtain quadrilateral
elements.

Another technique used in conjuction with other schemes to generate quadrilateral meshes
over complex geometries has been published under the title of geometric decomposition. This
method subdivides the domain into simply connected polygons to which another method is
applied to create the final mesh [16, 17, 18, 19] as discussed in detail in Chapter VI.

7

One of the most widely used unstructured methods, advancing front, has been published
as automatic triangular mesh generator capable of meshing complex geometries. If the ad-
vance of the front is associated with a transformation-from-triangles scheme, a fully quadri-
lateral mesh generation method is obtained [20]. Recently, a paving method was developed
by [21, 22, 23, 24], to generate quadrilateral elements directly in the front.

This chapter begins with the discussion of various types of computational grid used in
CFD solution, then goes through the properties that control the grid quality, in addition to
the grid classification.

Section 2.3 discusses the various common methods of grid generation in structured and
unstructured grids.

Finally, section 2.4 discuss a new paradigm in solving the flow governing equations. This
new paradigm contains many methods that can be best described by meshless (gridless)
methods.

2.2 GRID TYPES AND CLASSIFICATIONS

There are two fundamental classes of grid popular in the numerical solution of boundary value
problems in multidimensional regions: structured and unstructured grids. These classes
differ in the way in which the mesh points are locally organized. In the most general sense,
this means that if the local organization of the grid points and the form of the grid cells do
not depend on their position but are defined by a general rule, the mesh is considered as
structured. When the connection of the neighboring grid nodes varies from point to point,
the mesh is called unstructured. As a result, in the structured case the connectivity of the
grid is implicitly taken into account, while the connectivity of unstructured grids must be
explicitly described by an appropriate data structure procedure.

The two fundamental classes of mesh give rise to three additional subdivisions of grid
types: block-structured, overset, and hybrid. These types of mesh possess to some extent
features of both structured and unstructured grids, thus occupying an intermediate position
between the purely structured and purely unstructured grids.

2.2.1 Structured Grids

The most popular and efficient structured grids are those whose generation relies on a map-
ping concept. According to this concept the nodes and cells of the grid in an n-dimensional
regionXn ⊂ Rn are defined by mapping the nodes and cells of a reference (generally uniform)
grid in some standard n-dimensional domain Ξn with a certain transformation

x (ξ) : Ξn → Xn, ξ = (ξ1, . . . , ξn) , x =
(
x1, . . . , xn

)
(2.1)

8

from Ξn onto Xn. The domain Ξn is referred to as the logical or computational domain.
The mapping concept was borrowed from examples of grids generated for geometries

that are described by analytic coordinate transformations. In particular, two-dimensional
transformations have often been defined by analytic functions of a complex variable. This is
the case, for example, for the polar coordinate system in circular regions

x(ξ) = exp(ξ1)(cos ξ2, sin ξ2), r0 ≤ ξ1 ≤ r1, 0 ≤ ξ2 ≤ 2π.

As an illustrative example of a three-dimensional transformation, the following scaled
cylindrical transformation may be considered:

x(ξ) : Ξ3→X3, ξ = (ξ1, ξ2, ξ3), 0≤ξi≤1, i = 1, 2, 3

described by

x1(ξ) = r cos θ
x2(ξ) = r sin θ (2.2)
x3(ξ) = Hξ3

where

r = r0 + (r1 − r0)ξ1, θ = θ0 + (θ1 − θ0)ξ2, H > 0,

with

0 < r0 < r1, 0 ≤ θ0 < θ1 ≤ 2π

Figure 2.1: Cylindrical Structured Grid[25]

9

If θ1 = 2π then this function transforms the unit three-dimensional cube into a space
bounded by two cylinders of radii r0 and r1 and by the two planes x3 = 0 and x3 = H as
shown in Fig. (2.1). The reference uniform grid in Ξ3 is defined by the nodes

ξi,j,k = (ih, jh, kh), 0 ≤ i, j, k ≤ N , h = 1/N ,

where i, j, k and N are positive integers. The cells of this grid are the three dimensional
cubes bounded by the coordinate planes ξ1

i = ih, ξ2
j = jh, and ξ3

k = kh. Correspondingly,
the structured grid in the domain X3 is determined by the nodes

xijk = x(ξijk), 0 ≤ i, j, k ≤ N .

The cells of the grid in X3 are the curvilinear hexahedrons bounded by the curvilinear
coordinate surfaces derived from the parametrization x(ξ), Fig. (2.1).

2.2.1.1 Coordinate Grids

Among structured grids, coordinate grids in which the nodes and cell faces are defined by
the intersection of lines and surfaces of a coordinate system in Xn are very popular in
finite difference and finite volume methods. The range of values of this system defines a
computation region Ξn in which the cells are rectangular n-dimensional parallelepipeds, and
the coordinate values define the function x(ξ) : Ξn → Xn.

The simplest of such grids are the Cartesian grids obtained by the intersection of the
Cartesian coordinates in Xn. The cells of these grids are rectangular parallelepipeds (rect-
angles in two dimensions). The use of Cartesian coordinates avoids the need to transform
the physical equations. However, the nodes of the Cartesian grid do not coincide with the
curvilinear boundary, which leads to difficulties in implementing the boundary conditions
with second-order accuracy in flow domains of complex geometries.

2.2.1.2 Boundary-Fitted Grids

An important subdivision of structured grids is the boundary-fitted or boundary- conform-
ing grids. These grids are obtained from one-to-one transformations x(ξ) which map the
boundary of the domain Ξn onto the boundary of Xn.

The most popular of these, have become the coordinate boundary-fitted grids whose
points are formed by intersection of curved coordinate lines, while the boundary of Xn

is composed of a finite number of coordinate surfaces (lines in two dimensions) ξi = ξ0
i .

Consequently, in this case the computation region Ξn is a rectangular domain, the boundaries
of which are determined by (n−1)-dimensional coordinate planes in Rn, and the uniform grid
in Ξnis the Cartesian grid. Thus the physical region is represented as a deformation of a
rectangular domain and the generated grid as a deformed lattice as shown in Fig. (2.2).

These grids give a good approximation to the boundary of the region and are therefore
suitable for the numerical solution of problems with boundary singularities, such as those

10

with boundary layers in which the solution depends very much on the accuracy of the
approximation of the boundary conditions.

The requirements imposed on boundary-conforming grids are naturally satisfied with
the coordinate transformations x(ξ). The algorithm for the organization of the nodes of
boundary-fitted coordinate grids consists of the trivial identification of neighboring points
by incrementing the coordinate indices, while the cells are curvilinear hexahedrons. This
kind of grid is very suitable for algorithms with parallel computing1. Its design makes it
easy to increase or change the number of nodes as required for multigrid methods or in
order to estimate the convergence rate and error, and to improve the accuracy of numerical
methods for solving boundary value problems.

Figure 2.2: Boundary-conforming quadrilateral grid[25]

With boundary-conforming grids there is no necessity to interpolate the boundary condi-
tions of the problem, and the boundary values of the region can be considered as input data
to the algorithm, so automatic codes for grid generation can be designed for a wide class of
regions and problems.

In the case of unsteady problems the most direct way to set up a moving grid is to do it
via a coordinate transformation. These grids do not require a complicated data structure,
since they are obtained from fixed domains, where the grid data structure remains intact.

2.2.1.3 Shape of Computational Domains

The idea of the structured approach is to transform a complex physical domain Xn to a
simpler domain Ξn with the help of the parametrization x(ξ). The region Ξn in Eq. (2.1),
which is called the computational or logical region, can be either rectangular or of a different
shape matching, qualitatively, the geometry of the physical domain; in particular, shape that
can be triangular for n = 2 Fig. (2.3), or tetrahedral for n = 3. Using such parametrizations,
a numerical solution of a partial differential equation in a physical region of arbitrary shape
can be carried out in a standard computational domain, and codes can be developed that
require only changes in the input.

The cells of the uniform grid can be rectangular or of a different shape. Schematic
illustrations of two-dimensional triangular and quadrilateral grids are presented in Figs. (2.3

1Parallel computing is a form of computation in which many calculations are carried out simultaneously,
operating on the principle that large problems can often be divided into smaller ones, which are then solved
concurrently (in parallel).

11

Figure 2.3: Boundary Conforming Triangular Grid[25]

and 2.4), respectively. Note that regions in the form of curvilinear triangles, such as that
shown in Fig. (2.3), are more suitable for gridding in the structured approach by triangular
cells than by quadrilateral ones.

Figure 2.4: Computational Domains adjusted to the Physical Domains [25]

2.2.1.4 Stretching Methods

The stretching approach for generating structured grids is applied widely in the numerical so-
lution of partial differential equations. Its major advantage is the rapidity of grid generation
and direct control of grid spacing, while the main disadvantage is the necessity to explicitly
select the zones where the stretching is needed. Of central importance in the method are
intermediate transformations constructed on the basis of some standard stretching functions
which provide the required spacing between the coordinate lines in selected zones.

A stretching method utilizing the standard stretching functions supplies one with a very
simple means to cluster the nodes of the computational grid within the regions of steep
gradients without an increase in the total number of grid nodes. This grid concentration
improves the spatial resolution in the regions of large variation, thus enhancing the accuracy
of the algorithms applied to the numerical solution of partial differential equations as further
shown in Chapter VI.

2.2.1.5 Structured grid generation overview

The most efficient structured grids are boundary-conforming grids. The generation of these
grids can be performed by number of approaches and techniques. Many of these methods
are specifically oriented to the generation of grids for the finite-difference method.

12

A boundary-fitted coordinate grid in the region Xn is commonly generated first on the
boundary of Xn and then successively extended from the boundary to the interior of Xn.
This process is analogous to the interpolation of a function from a boundary or to the
solution of a differential boundary value problem. On this basis there have been developed
three basic groups of methods of grid generation:

• Algebraic Methods, which use various forms of interpolation or special functions.

• Differential methods, based mainly on the solution of elliptic, parabolic, and hyperbolic
equations in a selected transformed region.

• Variational methods, based on optimiation of grid quality properties.

Algebraic method In the algebraic approach the interior points of the grid are commonly
computed through formulas of transfinite interpolation. Methods like Transfinite Interpola-
tion, Lagrange and Hermite Interpolations can be further seen in [25, 26, 13].

Algebraic methods are simple; they enable the grid to be generated rapidly and the
spacing and slope of the coordinate lines to be controlled by the blending coefficients in the
transfinite interpolation formulas. However, in regions of complicated shape the coordinate
surfaces obtained by algebraic methods can become degenerate or the cells can overlap or
cross the boundary. Moreover, they basically preserve the features of the boundary surfaces,
in particular, discontinuties. Algebraic approaches are commonly used to generate grids in
regions with smooth boundaries that are not highly deformed, or as an initial approximation
in order to start the iterative process of an elliptic grid solver.

Differential method For regions with arbitrary boundaries, differential methods based
on the solution of elliptic and parabolic equations are commonly used [25, 27]. The interior
coordinate lines derived through these methods are always smooth, being a solution of these
equations, and thus discontinuties on the boundary surface do not extend into the region.
The use of parabolic and elliptic systems enables orthogonal and clustering coordinate lines
to be constructed, while, in many cases, the maximum principle, which is typical for these
systems, ensures that the coordinate transformations are nondegenerate. Elliptic equations
are also used to smooth algebraic or unstructured grids.

In practice, hyperbolic equations are simpler than nonlinear elliptic ones and enable
marching methods to be used and an orthogonal system of coordinates to be constructed,
while grid adaptation can be performed using the coefficients of the equations. However,
methods based on the solution of hyperbolic equations are not always mathematically correct
and they are not applicable to regions in which the complete boundary surface is strictly
defined. Therefore hyperbolic methods are mainly used for simple regions which have several
lateral faces for which no special nodal distribution is required. Hyperbolic generation is
particularly well suited for use with the overset grid approach. The marching procedure for
the solution of hyperbolic equations allows one to decompose only the boundary geometry

13

in such a way that neighboring boundary grids overlap. Volume grids will overlap naturally
if sufficient overlap is provided on the boundary. In practice, a separate coordinate grid
around each subdomain can be generated by this approach.

Variational method Variational methods are used to generate grids which are required
to satisfy more than one condition, such as nondegeneracy, smoothness, uniformity, near-
orthogonality, or adaptivity, which cannot be realized simultaneously with algebraic or differ-
ential techniques [25, 27, 28]. Variational methods take into account the conditions imposed
on the grid by constructing special functionals defined on a set of smooth or discrete trans-
formations. A compromise grid, with properties close to those required, is obtained with the
optimum transformation for a combination of these functionals.

At present, variational techniques are not widely applied to practical grid generation,
mainly because their formulation does not always lead to a well-posed mathematical problem.
However, the variational approach has been cited repeatedly as the most promising method
for the development of future grid generation techniques, owing to its underlying, latent,
powerful potential.

2.2.2 Block Structured Grids

In the commonly applied block strategy, the region is divided without holes or overlaps into
a few contiguous subdomains, which may be considered as the cells of a coarse, generally
unstructured grid. A separate structured grid is then generated in each block. The union
of these local grids constitutes a mesh referred to as a block-structured or multi-block grid.
Grids of this kind can thus be considered as locally structured at the level of an individual
block, but globally unstructured when viewed as a collection of blocks. Thus a common idea
in the block-structured grid technique is the use of different structured grids, or coordinate
systems, in different regions, allowing the most appropriate grid configuration to be used in
each region. This is further examined later in Chapter VI.

Figure 2.5: Block-Structured Grid[29]

14

Block-structured grids Fig. (2.5) are considerably more flexible in handling complex
geometries than structured grids. Since these grids retain the simple regular connectivity
pattern of a structured mesh on a local level, these block-structured grids maintain, in nearly
the same manner as structured grids, compatibility with efficient finite-difference or finite-
volume algorithms used to solve partial differential equations. However, the generation of
block structured grids may take a fair amount of user interaction and, therefore, requires
the implementation of an automation technique to lay out the block topology.

2.2.3 Unstructured Grids

Many field problems of interest involve very complex geometries that are not easily amenable
to the framework of the pure structured-grid concept. Structured grids may lack the required
flexibility and robustness for handling domains with complicated boundaries, or the grid cells
may become too skewed and twisted, thus prohibiting an efficient numerical solution. An
unstructured grid, Fig. (2.6), concept is considered as one of the appropriate solutions to
the problem of producing grids in regions with complex shapes.

Unstructured grids have irregularly distributed nodes and their cells are not obliged to
have any one standard shape. Besides this, the connectivity of neighboring grid cells is not
subject to any restrictions; in particular, the cells can overlap or enclose one another. Thus,
unstructured grids provide the most flexible tool for the discrete description of a geometry.

These grids are suitable for the discretization of domains with a complicated shape, such
as regions around aircraft surfaces or turbomachinery blade rows. They also allow one to
apply a natural approach to local adaptation, by either insertion or removal of nodes. Cell
refinement in an unstructured system can be accomplished locally by dividing the cells in the
appropriate zones into a few smaller cells. Unstructured grids also allow excessive resolution
to be removed by deleting grid cells locally over regions in which the solution does not vary
appreciably. In practice, the overall time required to generate unstructured grids in complex
geometries is much shorter than for structured or block structured grids.

However, the use of unstructured grids complicates the numerical algorithm because
of the inherent data management problem, which demands a special database to number
and order the nodes, edges, faces, and cells of the grid, and extra memory is required
to store information about the connections between the cells of the mesh. One further
disadvantage of unstructured grids is that causes excessive computational work is associated
with increased numbers of cells, cell faces, and edges in comparison with those for block
structured meshes. Furthermore, moving boundaries or moving internal surfaces of physical
domains are difficult to handle with unstructured grids. Besides, linearized difference scheme
operators on unstructured grids are not usually band matrices, which makes it more difficult
to use implicit schemes. As a result, the numerical algorithms based on an unstructured
grid topology are the most costly in terms of operations per time step and memory per grid
point.

Originally, unstructured grids were mainly used in the theory of elasticity and plasticity,

15

and in numerical algorithms based on finite-element methods. However, the field of applica-
tion of unstructured grids has now expanded considerably and includes computational fluid
dynamics.

Figure 2.6: Unstructured Hybrid Grid[30]

2.2.4 Overset (Chimera) Grids

Overset grid, Fig. (2.7), consists of two layers or more of the basic grid types. This is a
complex type of grid that needs a special care when being solved which in return requires a
special solver for handling such configuration. The method evidently requires high demand
on computer time and storage.

Figure 2.7: Overset Grid[31]

16

2.2.5 Hybrid Grids

Hybrid Grids are grids containing different types of cells in the same space. The need
of hybrid grids were raised due to the lack of automatic grid generation to be used only
for one grid type. Figure (2.8) shows one of these generated grids with quadrilateral on the
boundaries and triangular cells in the rest of the gridded space. The solver should be capable
of moving from one shape of grid to the others.

Figure 2.8: Hybrid Grid[32]

2.3 AUTOMATIC GRID GENERATION

2.3.1 Mapping Transformation

The mapping transformation was one of the first methods used in automatic quadrilateral
mesh generation. The research and development that have been invested in this method
produced a great number of versions widely used in the currently available CFD commercial
packages [13, 28, 26, 33]. In this section, transfinite interpolation, elliptic generators, and
hyperbolic generator are presented. Mapping techniques are relatively easy to implement;
however, complex configurations depend on geometric decomposition and/or topological rep-
resentation techniques in order to generate good meshes.

2.3.1.1 Transfinite Interpolation

The basic scheme of this method uses linear blending functions to map a natural domain
into the physical domain. The natural domain is represented as a square region with natural
coordinates (ξ, η) varying from zero to one. Each side of the natural domain is mapped
into four parametric curves that enclose the physical domain [28, 34, 26]. Hence, any point
x = (x, y, z) inside the physical domain can be obtained as

17

x = (1− ξ) f1 (η) + ηf2 (ξ) + ξf3 (η) + (1− η) f4 (ξ)
− (1− ξ) ηx12 − ξη23 − ξ (1− η)x34 − (1− ξ) (1− η)x41 (2.3)

where xij are the four nodes defined by the intersection of the four parametric curves
f1(η), f2(ξ), f3 (η) , f4(ξ), defined as

fi (t) = (x(t), y(t), z(t)) t = η, ξ (2.4)

By inspection of Eq. (2.3) one can easily conclude that blending functions, different
from linear, can be used to control the aspect ratio of the elements in the mesh. Similar
methodology is used in the present study and detailed in Chapter VI.

A similar approach is adopted in Isoparametric Interpolation a similar approach is adopted
where only a few points of the boundaries are used [35]. This approach can also be used as
a smoothing scheme to improve the mesh iteratively, in which the new position of a node is
obtained as the average of its adjacent nodes [24].

2.3.1.2 Elliptic Generators

The method generates the mesh by solving an elliptic differential equation that describes
the transformation between the natural and physical domains [13, 28, 26]. Typically, the
Laplace equation written in the physical domain governs this transformation:

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0 (2.5)

where φ = ξ, η. This method is also known as Winslow or homogeneous Thompson-
Thames-Mastic (TTM) generator [26].

Laplace Equation, (2.5), is solved in the natural domain and the transformation yields

g22
∂2ψ

∂ξ2 − 2g12
∂2ψ

∂ξ∂η
+ g11

∂2ψ

∂η2 = 0 (2.6)

where ψ = x, y, z, and

g11 =
∂x

∂ξ
·
∂x

∂ξ
=
∂x
∂ξ

2

+
∂y
∂ξ

2

+
∂z
∂ξ

2

(2.7)

18

g12 =
∂x

∂ξ
·
∂x

∂η
=
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
+
∂z

∂ξ

∂z

∂η
(2.8)

g22 =
∂x

∂η
·
∂x

∂η
=
∂x
∂η

2

+
∂y
∂η

2

+
∂z
∂η

2

(2.9)

which are the components of the covariant metric tensor of the transformation, see Ap-
pendix A. The computational stencil, using a second-order centered finite difference scheme
for the numerical approximation of the first and second derivatives, becomes

ψij = C

 g22

∆ξ2 (ψi+1,j + ψi−1,j)−
g12

2∆ξ∆η (ψi+1,j+1 − ψi1,j+1 − ψi+1,j−1 + ψi−1,j−1)(2.10)

+
g11

∆η2 (ψi,j+1 + ψi,j−1)
 (2.11)

where

C =
1

2
 g22

∆ξ2 +
g11

∆η2

 (2.12)

Figure 2.9: Transfinite Interpolation and Laplace Scheme[36].

19

Frequently, the final mesh is acheived by iteratively applying this stencil to an initial
algebraic mesh, in which case the method is used as smoothing scheme. The final mesh
displays a high level of orthogonality throughout the entire domain, but tends to concenrate
nodes around convex sectors of the boundaries and move them away from concave sectors
[28]. These properties can be noticed in Fig. (2.9)

The Poisson equation scheme provides an equal level of orthogonality with better control
of the mesh along convex and concave sectors of the boundaries [13, 28]. The governing
equations are obtained by writing a Laplace nonhomogeneous equation:

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = Qφ (2.13)

where φ = ξ, η, and Qφ are the weight functions that provide mesh control. This equation
is also solved using

g22
∂2ψ

∂ξ2 − 2g12
∂2ψ

∂ξ∂η
+ g11

∂2ψ

∂η2 = −g
Qξ

∂ψ

∂ξ
+Qη

∂ψ

∂η

 (2.14)

where

g =
∣∣∣∣∣∣
∂x

∂ξ
×
∂x

∂η

∣∣∣∣∣∣
2

(2.15)

2.3.1.3 Hyperbolic Generators

Hyperbolic grid generation methods solve a hyperbolic set of equations to grow a grid from
a boundary [33]. Fig. (2.10) shows a grid generated in this way. Typically the hyperbolic
system is defined by imposing that the grid lines be orthogonal,

∂x

∂rµ
·
∂x

∂rv
= 0, µ 6= v (2.16)

and that the cell area is specified

∣∣∣∣∣∣
∂x

∂r

∣∣∣∣∣∣ = ∆

20

Figure 2.10: Hyperbolic Grid[37]

Hyperbolic methods usually add smoothing to prevent grid lines from prematurely cross-
ing. The outer boundary of the grid is determined as the equations are solved, and thus the
method is of limited use for block structured grids. The method is much faster than elliptic
method since the grid is constructed by marching and is a useful technique in the context of
overlapping grids.

2.3.2 Grid Superposition

The first step in the grid superposition method is to overlay an orthogonal grid of points over
the entire domain and connect them to form an initial mesh. The points lying outside the
boundaries are then eliminated, and the remaining nodal points operate as the core of the
whole mesh. In general, grid superposition requires some transformation of triangles in order
to acheive a fully boundary-fitted quadrilateral mesh. In the third stage, the initial mesh is
connected to the boundary nodes using quadrilateral and trianglular elements. Finally, this
mixed mesh is transformed into an all-quadrilateral mesh.

Grid superposition has also been published under the title of quadtree[38]. This name
refers to the technique used to store the nodes of the overlaid mesh according to their spatial
position. The method is combined with an advancing front scheme [39] to complete the
mesh along the boundaries and used an a posteriori approach of subdividing the triangular
elements to obtain quadrilateral elements.

A modified quadtree technique is proposed that divides the three-, four- and five-sided

21

polygons created in the initial mesh into quadrilateral elements. The possibility of creating
three types of polygons results in good control of the mesh density.

2.3.3 Geometric Decomposition

Published as an automatic mesh generator, the method is, in reality, an auxiliary scheme that
divides the domain into simple polygons which are then meshed using one of the methods
discussed. In planar configurations, the medial axis technique has been used to divide
complex geometries. It consists of a set of interconnected curves containing the center of all
circles that can be inscribed in the geometry. It provides the basis for the final division of
the domain. The medial axis technique along with other techniques was used [17] and [19]
to generate the final decomposition. The medial axis technique was used as an aid to form
an abstract representation of the geometry [18]. The medial axis technique forms a sketch
graphic representation of the domain indicating which pieces seem to project out from the
geometry and must be decomposed first. The decomposition technique was extended to the
level of the final discretization by [40], creating meshes with high-density gradients.

A scheme that represents the surface to be meshed with meshed patches introduced by
[41]. The first step consists of overlaying an initial set of regular meshed patches. Then,
intersections between the boundaries and the patches are determined. In a third stage, the
parts of the initial regular meshed patches that lay outside the surface are deleted. Finally,
the patches are connected to the boundaries in order to form the mesh with each one of the
regular meshed patches represents a division of the entire domain.

2.3.4 Transformation From Triangular Meshes

Any triangle can be divided into three quadrilaterals. This fact opens the possibility of using
any existing triangular mesh generator to create a quadrilateral mesh [42]. Triangles can
also be merged to produce quadrilateral elements [14]. The former scheme generates a mesh
with finer density if compared to the inital triangular mesh, whereas the latter one ends
up with a coarser density. However, the combination of both is often necessary to guar-
antee a quadrilateral mesh with reasonable element aspect ratios. Another algorithm that
attempts to generate good quadrilateral elements whose quality is associated with quality of
the initial triangular mesh have been proposed by [43]. Additional scheme to preserve the
original density distribution during the transformation has been proposed by [44]. Basically,
the scheme combines two trianlges to form a quadrilateral that is then divided into four
quadrilaterals. The mesh density obtained is closer to the original density than it would be
if the two triangles had been direclty divided into six quadrilaterals.

The above approaches require a relatively simple code, taking advantage of the speed and
robustness of the existing trianglular mesh generators capable of discretizing very complex
geometries.

22

2.3.5 Advancing Front Method

The advancing front method has been successfully used to automatically generate triangular
meshes over general geometries. The robsutness of the technique is based on the fact that
any polygon can be decomposed into triangles, so theat the closure of the mesh can always
be acheived. Recently, some research has been conducted to generate quadrilateral elements
with similar approaches. Another method that advances the front by creating and combining
triangles, still in the front, to generate quadrilateral elements has been proposed by [20]. This
algorithm requires a simply connected domain, i.e. all internal boundaries of the domain
must be connected to its external boundary using cut lines.

Another method developed to directly generate quadrilateral elements in the front was
introduced under the title of paving [21, 22, 23, 24]. This method advances the front by
projecting rows of quadrilaterals inward, so that the elements near the contour tend to have
a good aspect ratio, contributing to the orthogonality of the mesh along the boundaries (i.e.,
the perpendicularity of the lines of the mesh). In this method, as in [20], the closure is
guaranteed if the front has an even number of nodes, which is acheived by maintaining this
condition throughout the generation.

Paving has been used to automatically generate quadrilateral meshes over general planar
geometries. The complexity of the algorithm, however, leads to a relatively low speed of
generation if compared to the advancing front method used to produce triangular meshes.

2.4 MESHLESS METHODS

All the major fields of computational fluid mechanics, including finite element methods
(FEM), finite difference methods (FDM), and finite volume methods (FVM), have tradi-
tionally relied on the use of elements, interlaced grids, or finite volumes as the underlying
structures upon which the governing partial differential equations (PDE) are discretized[45,
46, 47].

Despite their varied names, all meshless schemes bypass the use of a conventional mesh
to some degree. On the other hand, meshless schemes only require clouds of points, from
which PDEs may be discretized. Local clouds for each point in a domain are proximity-based
subsets of the global set of points. Local clouds of points replace the more traditional forms
of connectivity found in FEM, FDM, and FVM. This loose definition of connectivity forms
the basis for a wide variety of numerical methods for PDE’s, some of the most notable of
which are discussed here.

The motivation behind meshless methods lies in relieveing the burden of mesh genera-
tion. Since the application of computational methods to real world problems appears to be
paced by mesh generation, alleviating this bottleneck potentially impacts enormous field of
problems. It is not clear at this point how effective meshless methods will be at alleviating
meshing problems. While a rigid mesh is not required, sufficiently dense point distributions
are still required. Moreover, points must be grouped locally to form clouds. Obtaining opti-

23

mal clouds for different methods is also a non-trivial problem. However, recent progress in
the area of point distribution and cloud generation has shown great promise [48, 46, 45].

A distinction should be made between global and local meshless methods clouds of points.
A global cloud of points contains all points in a given domain, while a local cloud of points is a
small subset of the global cloud. It is on the local cloud of points that PDEs are descritized.
The use of a local cloud enables compact support with small bandwidth of the resulting
linear system instead of large non-sparse systems[49, 50, 48]. Global and local clouds in two
dimensions are illustrated in Fig. (2.11).

Figure 2.11: Meshless discretization framework[51].

2.5 SUMMARY

Various types of computational grid has been reviewed with main classifications from the
geometrical point of view, i.e. structured and unstructured grids. Hybrid and overset grids
have also been discussed along with the generation techniques associated with each type
and class. Short review of the meshless methods has been given to conclude the review of
previous work on grid types and generation techniques.

24

CHAPTER III

COMPUTATIONAL FLUID DYNAMICS AND
COMPUTATIONAL GRIDS

3.1 INTRODUCTION

Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid mechanics
that uses numerical methods and algorithms for the analysis of systems involving fluid flow,
heat transfer and associated phenomena such as chemical reactions by means of computer-
based simulation. With high-speed supercomputers, better solutions can be achieved. On-
going research yields software that improves the accuracy and speed of complex simulation
scenarios such as transonic or turbulent flows.

The technique is very powerful and spans a wide range of industrial and research appli-
cations. Some examples are:

• aerodynamic forces on aircrafts and vehicles.

• hydrodynamics of ships.

• power plants; combustion in IC engines and gas turbines.

• turbomachinery and electronic engineering: cooling of equipment including micro-
circuits.

• chemical process engineering: mixing and separation, polymer molding.

• external and internal environment of buildings: wind loading and heating/ventilation.

• marine engineering: loads on off-shore structures.

• environmental engineering: distribution of pollutants and effluents.

• hydrology and oceanography: flows in rivers, estuaries, oceans.

• meterology: weather prediction.

• biomedical engineering: blood flows through arteries and veins.

The ultimate aim of developments in the CFD field is to provide a capability comparable
in accuracy and performance to other CAE (Computer-Aided Engineering) tools such as

25

stress analysis codes. For a long time CFD has been lagging behind other CAE codes
mainly because of the tremendous complexity of the underlying behavior of the governing
equations, which precludes a description of fluid flows. The availability of friendly interfaces
have led to a recent upsurge of interest and CFD was poised to make an entry into the wider
industrial community early in the 1980s.

The fundmental concepts and methodology of CFD are discussed in this chapter with
emphasis on the weight placed on computational grids and their properties affecting solution
integrity. In section 3.2 a breif derivation of the governing equations of the fluid flow is
presented. In section 3.3 the Finite Volume descritiztion Method (FVM), is presented.

3.2 THE GOVERNING EQUATIONS

The main objectives of CFD is to obtain numerical values across the flow field of its various
variables. These variables are physically related by a mathematical model referred to as “the
governing equations” represented by:

• The conservation of Mass equation (Continuity Equation).

• The conservation of linear Momentum equation (Momentum Equation).

• The conservation of Enegry equation (Energy Equation).

In the following, the governing equations are written for easy reference when the solution
procedure is discussed. For detailed derivation of these equations, the reader may refer to
text books on CFD, eg[52, 2].

In tensor notation[7], the governing equations may be written as:
i) Continuty Equation:

∂ρ

∂t
+∇ · (ρV) = Sm (3.1)

ii) Momentum Equation:

D (ρV)
Dt

+∇ (ρV⊗V− T) = Sv (3.2)

iii) Energy Equation:

∂h

∂t
+∇ · (hV− q) = Sφ (3.3)

Where:

V Fluid Velocity Vector

ρ Fluid Density

T Stress Tensor given by, see (3.1)

26

T = −
(
p− 2

3µ∇ ·V
)
I + 2µD (3.4)

T = σij =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σxx τxy τxz

τyx σyy τyz

τzx σzy σzz

 (3.5)

q Flux Vector usually given by a Fourier type law

q = Γφ∇φ

Γφ Diffusion Coefficient.

p Hydrostatic Pressure

I Unit Tensor

D Rate of Strain Tensor given by:

D = εij =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =

∂u
∂x

1
2

(
∂u
∂x

+ ∂u
∂y

)
1
2

(
∂u
∂x

+ ∂u
∂z

)
1
2

(
∂v
∂y

+ ∂v
∂x

)
∂v
∂y

1
2

(
∂v
∂y

+ ∂v
∂z

)
1
2

(
∂w
∂z

+ ∂w
∂x

)
1
2

(
∂w
∂z

+ ∂w
∂y

)
∂w
∂z

 (3.6)

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(3.7)

Figure 3.1: Stress Tensor Components

27

The terms on the right-hand side of governing Equations (3.1 - 3.3) represent sources or
sinks of the basic variable considered. These equations, however, can be re-written in the
general coordinate free form [7]

D (ρψ)
Dt

+∇ · (ρψ ⊗V−Ω) = S (3.8)

where ψ and S are tensor fields of the same order and Ω is a tensor field of one order
higher than that of ψ and S. The assigned value of ψ, Ω, and S, to yield the mass and,
momentum equations are shown, respectively, in Table (3.1)

Transport Equation ψ Ω S

Mass 1 0 Sm
Momentum V T Sv

Scalar φ q Sφ

Table 3.1: Definition of Quantities in Eq. (3.8)

3.3 FINITE VOLUME DESCRITIZATION OF THE GOVERN-
ING EQUATIONS

The governing Eqs. (3.1 - 3.3) are, by nature, non linear and do not have an exact solution.
Most solution methods adopted attempt at obtaining an approximate solution at predefined
points in the flow domain. For this purpose, a gird is superimposed on the flow domain
and values of the variables are sought at the grid intersection points. The partial deriva-
tives in the governing equations are next approximated to algebraic formulae that can be
solved numerically to yield the flow parameters at the grid nodes. This approximation pro-
cess is referred to as descritization of the governing equation. Here, only Finite Volume
Methodology (FVM) of descritization will be reviewed.

The finite volume method (FVM) is an increasingly popular numerical method for ap-
proximate solution of partial differential equations (PDEs)[2, 3]. In this method, the flow
domain is divided into control volumes (computational cells) by a suitable grid generator.
The governing equations are integrated over the computational cells and then cast in a form
suitable for numerical solution.

The method offers the following advantages:

1. The governing equations are presented in their integral form which is often how they
are derived from the underlying physical laws.

2. The FVM naturally conserves the conserved quantities when applied to PDEs express-
ing conservation laws since, as two neighboring cells share a common interface, the
total flux of a conserved quantity out of one cell will be the same as that entering the
next cell.

28

3. The computational grids employed in FVM usually offer flexible descritization as they
can accommodate irregularly shaped boundaries to reduce geometry errors, as well as
the possibility of local refinement for better resolution in regions of high gradients.

One disadvantage of FVM is that there is no easily accessible underlying theory for formal
accuracy.

Because of the nature of FVM [2], the governing equations are integrated first before
descritization takes place. For a two-dimensional steady incompressible flow, the momentum
equation may be written as:

∂Jx
∂x

+
∂Jy

∂y
= S (3.9)

where Jx and Jy are the total (convective and diffusive) fluxes defined by

Jx ≡ ρuψ − Γ
∂ψ

∂x
(3.10)

and

Jy ≡ ρvψ − Γ
∂ψ

∂y
(3.11)

where u and v denote the velocity components in the x and y directions and Γ is the
diffusivity coefficient. The integration of Eq. (3.9) over the control volume shown in Fig.
(3.2) gives

Je − Jw + Jn − Js = (SC + SPψP) ∆x∆y (3.12)

where the source term has been linearized according to the recommendations of [6]. The
quantities Je, Jw, Jn, and Js are the integrated total fluxes over the control-volume faces;
that is, Je stands for

´
Jx dy over the interface e, and so on.

In a similar manner, the continuity equation (3.1) can be integrated over the control
volume to yield

Fe − Fw + Fn − Fs = 0 (3.13)

where Fe, Fw, Fn, and Fs are the mass flow rates through the faces of the control volume.

29

If ρu at point e is taken to prevail over the whole interface e, one can write

Fe = (ρu)e ∆y (3.14)

Similarly,

Fw = (ρu)e ∆y (3.15)

Fn = (ρv)n ∆x (3.16)

Fs = (ρv)s ∆x (3.17)

Figure 3.2: Control Volume for the Two-Dimensional Situation[6]

Subtracting Eq. (3.13) from Eq. (3.12) become:

(Je − FeψP)− (Jw − FwψP) + (Jn − FnψP)− (Js − FsψP) = (SC + SPψP) ∆x∆y
(3.18)

Equation (3.18) may be cast in the final form

aPφP = aEφE + aWφW + aNφN + aSφS + b (3.19)

30

where the φ’s are the values of the variable under consideration at the nodal points shown
in Fig. (3.2) and the a’s are the convective and diffusive fluxes at the cell faces e, w, n, and
s as shown[6].

Equations (3.19) are solved iteratively to yield values of φ’s at every nodal point. How-
ever, special treatment for cell face fluxes, velocity pressure coupling schemes and closure
models have to be implemented as detailed in textbooks on CFD methodology [2, 6, 52].

3.4 THE COMPUTATIONAL GRID

As mentioned earlier, the governing equations (3.19) are solved iteratively over a foundation
computational grid to yield approximate values of the flow parameters at grid nodes. Cre-
ating the foundation grid is considered to be the most critical stage in the CFD simulation
process (and the most time and effort consuming) as mentioned before. Without a properly
adjusted fine grid, inaccurate results are likely to be obtained and may lead to a defected
design.

There are two general notions of a grid in an n-dimensional bounded domain. One of these
considers the grid as a set of algorithmically specified points of the domain. The points are
called the grid nodes. The second considers the grid as an algorithmically described collection
of standard n-dimensional volumes covering the solution domain. The standard volumes are
referred to as the grid cells. The cells are bounded curvilinear volumes, whose boundaries
are divided into a few segments which are (n−1)-dimensional cells. Therefore they can be
formulated successively from one dimension to higher dimensions. The boundary points of
the one-dimensional cells are called the cell vertices. These vertices are the grid nodes. Thus
the grid nodes are consistent with the grid cells in that they coincide with the cell vertices.

3.4.1 Desired Properties of Computational Grid

As already noted, the accuracy of the numerical solutions, and the stability and the rate of
convergence of the solution procedure all depend to a certain degree on particular properties
of the computational grid. These properties, the way of achieving them and the degree of
their influence will be described in this section.

The most influencial properties of the grid on the solution are:

• Orthogonality,

• Grid Spacing,

• Smoothness, and

• Alignment of grid lines with stream lines.

31

Orthogonality

The very reason for developing computational methods to solve flow cases in complex ge-
ometries is to enable working with non-orthogonal grids, which is desirable, if not essential
in most practical situations. However, it is still usefull to identify the advantages which arise
from minimizing the departure from orhogonality, all other factors being equal.

First of all, if orthogonality prevails, then all cross-derivative terms in the governing
equations vanish. This means there will be no explicit “sources” in the descritised equations
arising from these terms, and the “neglected” cross-derivatives terms in flux-corrections used
to derive the pressure-correction equation are also formally absent [7]. The result is a more
stable and faster converging numerical solution procedure.

The accuracy of numerical solution is not affected by grid non-orthogonality alone,
but also depends rather strongly on some other grid properties. However, strong non-
orthogonality does affect the stability and convergence rate of the solution, and therefore
should be avoided were possible1.

Grid Spacing

The accuracy of a choosen interpolation practices (differencing schemes) is usually judged by
means of the Taylor Series Truncation Analysis. This shows that all schemes lose one order
of accuracy if the grid spacing is non-uniform. From this consideration it could be concluded
that uniform spacing is a desirable property of a computational grid. However, this goal is
neither easy nor economical to achieve in every situation. In practical flow configurations
there are regions of very steep gradients where very fine resolution is needed, and regions of
low gradients, where more coarse spacing is adequate. For this reason a non-uniform grid is
usually preferable, and it is desirable that a grid generation procedure should facilitate the
achievement of such an arrangement.

In constructing non-uniform grids it is desirable to keep the grid expansion ratios in each
coordinate direction under control. These ratios are defined as (see Fig. (3.3))

r1
e =

δx
(1)
E

δx
(1)
P

; r2
e =

δx
(2)
E

δx
(2)
P

(3.20)

also the grid aspect ratios, defined as

ra =
 δx(i)

P

δx
(j)
P

i 6=j

(3.21)

1This, however, is not a shortcoming of the method in general, but a consequnce of the adopted treatment
of the cross-derivative terms.

32

Figure 3.3: Definition of grid expansion and aspect ratios

should not exceed ∼ 10. These ratios influence the stablility of the solution method (and
also the boundedness of solutions) [7, 1] due to the fact that they can generate negative
cross-derivatives coefficients.

Smoothness

Methods which use curvilinear velocity components that requires the calculation of curvature
terms, will suffer significantly from sensitivity to grid smoothness2. The geometrical infor-
mation about the grid is commonly limited to the cartesian coordinates of the cell vertices,
and hence these may and are taken to be connected by segments of straight lines. Therefore,
the grid lines are not - and need to be - continous.

Figure 3.4: Definition of grid smoothness

Here, however, the term smoothness is taken to refer to the relative change in grid line
direction from one cell to another, characterized by the angle θ shown in Fig. (3.4). This

2“Smooth” in this respect assumes continuity of the grid lines and their first derivatives.

33

does have an influence on the accuracy of the interpolation formulae used to obtain depen-
dent variable values at locations other than the principal nodes. Higher-order interpolation
practices may help in reducing the errors introduced by non-smoothness. However, they are
computationaly more expensive and can generate more negative coefficients, thus affecting
the stability of the solution process. Often it is possible to avoid large θ’s (i.e. to obtain a
smoother grid) by local refinement. Fig. (3.4) shows how large θ between cells (1) and (2)
can be reduced by one-third by halving the two cells.

It follows that, at least when linear interpolation is used, it is desirable that the grid
should be as smooth as the geometry of the solution domain allows. The method of grid
generation should clearly offer the possibility of controlling this grid property.

Alignment of Grid Lines with Stream Lines

“Numerical diffusion” is a function of the skewness of grid and stream lines, and is reduced to
minimum or completely eleminated if one set of grid lines is closely aligned with the stream-
line. This, therefore, is a very desirable property of the computational grid, and is probably
the one which most affects numerical accuracy, especially if a lower-order discretization
schemes are used[6].

However, in order to achieve alignment, it is necessary at the time of grid generation
to know the stream line pattern, which is usually not the case. Therefore, the generation
of an ideal grid should be an adaptive process, carried out during the course of the flow
calculation. Adaptive grid generation is, however, very complex and difficult to achieve.

A crude but effective alternative is to perform the adaptation manually, by generating a
solution on an initial grid and then using it to improve alignment for a subsequent more ac-
curate calculations. Of course, this is possible only if the grid generation procedure employed
offers this flexibility.

All of the forementioned desirable properties of a computational grid cannot, in general,
be satisfied simultaneously. However, the two which are of the highest importance for the
most solution methods are alignment of grid lines and stream lines and, high resolution in
regions of high gradient - do not conflict, and usually can be satisified to a much higher
degree than when regular or orthogonal grid are used.

3.5 CONCLUSIONS

The chapter started with the derivation of the conservation equations governing fluid flow
along with Finite Volume Method of descritization.

Computational Grid properties that usually influence the stability and accuracy, as well
as, economy of the iterative solution procedure have been discussed in some detail. Therefore,
subsequent generation of computaional grids, detailed in Chapter VI, will have to keep these
properties under tight control.

34

CHAPTER IV

MANIFOLDS AND HOMOTOPY

4.1 INTRODUCTION

This chapter is concerned with the definition of Manifolds as an abstracted term for curves
and surfaces in any dimension, and any space.

The chapter begins with the definition of Manifolds, then goes through the homoeo-
morphism (continuous maps with continuous inverses) between topological manifolds, and
functions.

The chapter finally discusses the most important one-dimensional manifolds used in this
thesis, beside an important algorithm of dividing the circle circumference into a number
curves of bezier curves is presented.

4.2 TOPOLOGICAL SPACES

In topology and related branches of mathematics, a topological space is a set of points, along
with a set of neighbourhoods for each point, that satisfy a set of axioms relating points and
neighbourhoods [53]. The definition of a topological space relies only upon set theory and
is the most general notion of a mathematical space that allows for the definition of concepts
such as continuity, connectedness, and convergence. Other spaces, such as manifolds and
metric spaces, are specializations of topological spaces with extra structures or constraints.

4.3 MANIFOLDS

In mathematics, a manifold is a topological space that resembles Euclidean space near each
point [54]. More precisely, each point of an n-dimensional manifold has a neighbourhood that
is homeomorphic to the Euclidean space of dimension n. Lines and circles, but not figure
eights, are one-dimensional manifolds. Two-dimensional manifolds are also called surfaces.
Examples include the plane, the sphere, and the torus, which can all be realized in three
dimensions, but also the Klein bottle and real projective plane which cannot. The surface
of the Earth requires (at least) two charts to include every point.

Although near each point, a manifold resembles Euclidean space, globally a manifold
might not. For example, the surface of the sphere is not a Euclidean space, but in a region
it can be charted by means of geographic maps: map projections of the region into the Eu-

35

clidean plane. When a region appears in two neighbouring maps (in the context of manifolds
they are called charts), the two representations do not coincide exactly and a transformation
is needed to pass from one to the other, called a transition map.

The concept of a manifold is central to many parts of geometry and modern mathematical
physics because it allows more complicated structures to be described and understood in
terms of the relatively well-understood properties of Euclidean space. Manifolds naturally
arise as solution sets of systems of equations and as graphs of functions. Manifolds may have
additional features. One important class of manifolds is the class of differentiable manifolds.
This differentiable structure allows calculus to be done on manifolds. A Riemannian metric
on a manifold allows distances and angles to be measured.

4.4 HOMOTOPY

Homotopy is the continuous transformation from one function to another. Homotopy be-
tween two functions f and g from a space X to a space Y is a continuous map G from
X × [0, 1] 7→ Y such that G(x, 0) = f(x) and G(x, 1) = g(x), where × denotes set pairing.
Another way of saying this is that a homotopy is a path in the mapping space Map(X, Y)
from the first function to the second.

Two mathematical objects are said to be homotopic if one can be continuously deformed
into the other. The concept of homotopy was first formulated by Poincaré around 1900 [55].

Formally, a homotopy between two continuous functions f and g from a topological space
X to a topological space Y is defined to be a continuous function H : X × [0, 1] → Y from
the product of the space X with the unit interval [0,1] to Y such that, if x ∈ X then
H(x, 0) = f(x) and H(x, 1) = g(x).

If one thinks of the second parameter of H as time then H describes a continuous de-
forming of f into g: at time 0 we have the function f and at time 1 we have the function
g.

An alternative notation is to say that a homotopy between two continuous functions
f, g : X → Y is a family of continuous functions ht : X → Y for t ∈ [0, 1] such that h0 = f

and h1 = g, and the map t 7→ ht is continuous from [0,1] to the space of all continuous
functions X → Y . The two versions coincide by setting ht(x) = H(x, t).

Continuous functions f and g are said to be homotopic if and only if there is a homotopy
H taking f to g as described above. Being homotopic is an equivalence relation on the set of
all continuous functions from X to Y . This homotopy relation is compatible with function
composition in the following sense: if f1, g1 : X → Y are homotopic, and f2, g2 : Y → Z are
homotopic, then their compositions f2 ◦ f1 and g2 ◦ g1 : X → Z are also homotopic.

4.4.1 Homotopy of Functions

In the special case of the Rn valued functions one can actually shows that all continuous
maps are homotopic to one another. Adding little pieces of f to little pieces of g, where the

36

portion of f shrinks, and the portion of g grows, as t goes from 0 to 1. The homotopy is
defined as:

F (s, t) = (1− t) · f(s) + t · g(s) (4.1)

It’s easy to see that Eq. (4.1) satisfies the conditions for a homotopy as when t = 0,
F (s, 0) = f(s), and when t = 1 F (s, 1) = g(s). Since this is composition of continuous
functions (addition, substraction, multiplication, and the maps f and g), this is also a
continuous function. This is known as the straight-line homotopy since one can imagine
taking the curve f and the curve g and drawing lines between associated points Fig. (4.1)
(i.e., drawing a line between f(s) and g(s) for each s), then the homotopy just moves f to
g along those lines. This result applies to convex subspaces of Rn as well.

Figure 4.1: Homotopy of Functions[56]

4.5 BEZIER CURVES

A Bézier curve is defined by a set of control points P0 through Pn, where n is called its order
(n = 1 for linear, 2 for quadratic, etc.). The first and last control points are always the end
points of the curve; however, the intermediate control points (if any) generally do not lie on
the curve.

4.5.1 Generalization

Bézier curves can be defined for any degree n. A recursive definition for the Bézier curve of
degree n expresses it as a point-to-point linear combination (linear interpolation) of a pair
of corresponding points in two Bézier curves of degree n−1.

Let BP0P1...Pn denote the Bézier curve determined by any selection of points P0, P1, ..., Pn.
Then to start,

37

BP0(t) = P0, and
B(t) = BP0P1...Pn(t) = (1− t)BP0P1...Pn−1(t) + tBP1P2...Pn(t) (4.2)

The formula can be expressed explicitly as follows:

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−itiPi

=(1− t)nP0 +
(
n

1

)
(1− t)n−1tP1 + · · ·

· · ·+
(

n

n− 1

)
(1− t)tn−1Pn−1 + tnPn, t ∈ [0, 1] (4.3)

where
(
n
i

)
are the binomial coefficients.

For example, for n = 5 Fig. (4.4):

BP0P1P2P3P4P5(t) = B(t) = (1− t)5P0 + 5t(1− t)4P1 + 10t2(1− t)3P2

+ 10t3(1− t)2P3 + 5t4(1− t)P4 + t5P5, t ∈ [0, 1]
(4.4)

Figure 4.2: Quadratic Bezier Curve[57]

Figure 4.3: Cubic Bezier Curve[57]

38

Figure 4.4: Quartic Bezier Curve[57]

4.5.1.1 Linear Bézier Curves

Given points P0 and P1, a linear Bézier curve is simply a straight line between those two
points. The curve is given by

B(t) = P0 + t(P1 −P0) = (1− t)P0 + tP1 , t ∈ [0, 1] (4.5)

and is equivalent to linear interpolation.

4.5.1.2 Quadratic Bézier Curves

A quadratic Bézier curve Fig. (4.2) is the path traced by the function B(t), given points P0,
P1, and P2,

B(t) = (1− t)[(1− t)P0 + tP1] + t[(1− t)P1 + tP2] , t ∈ [0, 1] (4.6)

which can be interpreted as the linear interpolant of corresponding points on the linear
Bézier curves from P0 to P1 and from P1 to P2 respectively. Rearranging the preceding
equation yields:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2 , t ∈ [0, 1] (4.7)

The derivative of the Bézier curve with respect to t is

B′(t) = 2(1− t)(P1 −P0) + 2t(P2 −P1) (4.8)

from which it can be concluded that the tangents to the curve at P0 and P2 intersect at
P1. As t increases from 0 to 1, the curve departs from P0 in the direction of P1, then bends
to arrive at P2 from the direction of P1.

39

The second derivative of the Bézier curve with respect to t is

B′′(t) = 2(P2 − 2P1 + P0) (4.9)

A quadratic Bézier curve is also a parabolic segment. As a parabola is a conic section,
some sources refer to quadratic Béziers as "conic arcs".

4.5.1.3 Cubic Bézier Curves

Four points P0, P1, P2 and P3 in the plane or in higher-dimensional space define a cubic
Bézier curve Fig. (4.3). The curve starts at P0 going toward P1 and arrives at P3 coming
from the direction of P2 . Usually, it will not pass through P1 or P2 ; these points are only
there to provide directional information. The distance between P0 and P1 determines "how
long" the curve moves into direction P2 before turning towards P3 .

Writing BPi,Pj ,Pk
(t) for the quadratic Bézier curve defined by points Pi, Pj, and Pk, the

cubic Bézier curve can be defined as a linear combination of two quadratic Bézier curves:

B(t) = (1− t)BP0,P1,P2(t) + tBP1,P2,P3(t) , t ∈ [0, 1] (4.10)

The explicit form of the curve is:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 , t ∈ [0, 1] (4.11)

For some choices of P1 and P2 the curve may intersect itself, or contain a cusp.
Any series of any 4 distinct points can be converted to a cubic Bézier curve that goes

through all 4 points in order. Given the starting and ending point of some cubic Bézier
curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control
points for the original Bézier curve can be recovered.

4.5.2 Cubic Bezier Curve Solution

The bezier curves of cubic degree Fig. (4.3) has been selected in this study to be implemented
throughout the software code. This proved to be the most effective and flexible form of Bezier
curve.

A cubic Bezier curve is defined by four points. Two are endpoints. (x0, y0) is the origin
endpoint. (x3, y3) is the destination endpoint. The points (x1, y1) and (x2, y2) are control
points. Two equations define the points on the curve.

Both are evaluated for an arbitrary number of values of t between 0 and 1. One equation
yields values for x, the other yields values for y. As increasing values for t are supplied to
the equations, the point defined by x(t), y(t) moves from the origin to the destination.

40

The parametric representaion of curve can be expressed in x(t) and y(t) where t = [0, 1].
To obtain

x(t) = axt3 + bxt2 + cxt+ x0 (4.12)

y(t) = ayt3 + byt2 + cyt+ y0 (4.13)

To obtain the control points P1 = (x1, y1), P2 = (x2, y2), and P3 = (x3, y3) from the
cubic parametric representation of the bezier curve as follow for x

x1 = x0 + cx/3 (4.14)
x2 = x1 + (cx + bx)/3 (4.15)
x3 = x0 + cx + bx + ax (4.16)

and as follow for my

y1 = y0 + cy/3 (4.17)
y2 = y1 + (cy + by)/3 (4.18)
y3 = y0 + cy + by + ay (4.19)

This method of definition can be reverse-engineered to give up the coefficient values
c,b, and a based on the points described above:

cx = 3(x1 − x0) (4.20)
bx = 3(x2 − x1)− cx (4.21)
ax = x3 − x0 − cx − bx (4.22)

cy = 3(y1 − y0) (4.23)
by = 3(y2 − y1)− cy (4.24)
ay = y3 − y0 − cy − by (4.25)

41

4.6 TRANFORMATION OF CIRCULAR ARCS INTO BEZIER
ARCS

The software in this study is using bezier curves to apply homotopy between their parametric
equations. Therefore any one topological shape should be partitioned into series of bezier
curves to satisfy this requirement. The following sections describe two methods of obtaining
a bezier curve from the circle. The first method is an analytical method[58] that divide the
circle into 4 equal bezier curves. The second method is a numerical method that has been
invented specially for the purpose of this study. This method has been improved to get the
bezier curve from any two points on the circle.

4.6.1 Analytical Method

It is impossible to draw an absolutely exact circle with one Bezier curve. But we can
approximate a unit quarter of a circle (900 arc) by a cubic Bezier curve with an error
1.96× 10−4 in the radius, what is ac-ceptable for most practical cases.

To approximate, one should divide the circle into four arcs and convert each of them
separately

Figure 4.5: Bezier Curve From Circle Arc[58]

Let us consider only the upper right segment (the arc from point A to point B) , because
we can convert other segments in the similar way (only some values will be negative). Since
the angle AOB is of 90 degrees, the Bezier control line AA’ is horizontal, and the Bezier
control line BB’ is vertical. The radius r of the circle is equal to the length of the lines OA,
OB, as well as OC. The point C is on the middle of the arc AB, so the angles AOC and COB
equal 45 degrees. The length d of AA’ and BB’ is unknown, however, it can be expressed as
d = r ∗ k, where k is a constant (in the literature this constant very often is called as “magic
number”).

42

Let us assume that r = 1 and the coordinates of the center point O = [0, 0]. In this case,
d = k, so the coordinates of the four points, defining the Bezier curve, are:

A = [0, 1]
A′ = [k, 1]
B′ = [1, k]
B = [1, 0]
According to Eq. (4.3) cubic degree of bezier curve equation is

C(t) = (1− t)3A+ 3t(1− t)2A′ + 3t2(1− t)B′ + t3B (4.26)

Since the point C lies at t = 0.5, (1− t) = 0.5 and the relative x coordinate of C equals
the relative y coordinate of C, we can write the following two equations for C:

C = 8
1A+ 8

3A
′ + 8

3B
′ + 8

1B (4.27)

C =
√

1/2 =
√

2/2 (4.28)

Solving the two equations on the x axis (the same result would be for y axis as well) we
obtain:

0
8 + 3

8kl + 3
8 + 1

8 =
√

2/2

k = 4
3
(√

2− 1
)

= 0.5522847498 (4.29)

So, the control points of the cubic Bezier curve for the upper right arc of a circle with
radius r are:

A = [0, r]
A′ = [r ∗ k, r]
B′ = [r, r ∗ k]
B = [r, 0]
Consider an arc of less than 90 degree and radius r. Assume that we have to approximate

it by one segment of a cubic Bezier curve.
the CW (clockwise) arc is symmetric along the positive x axis. The resulting Bezier curve

connects P1 and P4 and its boundary tangents are collinear with the vectors (P1 − P2) at
the start point and (P4 − P3) at the end point. The variation of tangent magnitude L is

43

within the domain [0, R ∗ tan(β/2)], The coordinates of the control points P2 and P3.

Figure 4.6: Bezier Curve From Two points on Circle[58]

Let the coordinates of the arc start point P1 and end point P4 be (x1, y1) and (x4, y4),
respectively. From the elementary geometry, the coordinates of the cubic Bezier control
points are P2 = (x2, y2) P3 = (x3, y3):

x2 = x1 + kR sin(ϕ) (4.30)
y2 = y1–kR cos(ϕ) (4.31)

x3 = x4 + kR sin(ϕ) (4.32)
y3 = y4 + kR cos(ϕ) (4.33)

4.6.2 Numerical Method

In the present study, it is assumed that a cubic bezier curve of four control points can
be approximated into a circle arc by taking two tangents from two selected points on the
specified circle as shown in Fig. (4.7)

The curve is constructed across the smaller angle φ between the two points P1 and P2

The two tangents are taken to have the same length i.e.

P1P2 = P3P4 = g (4.34)

This length however is assumed in the begining of calculation to be 0, g is then increased

44

by an increment ∆v fraction of the perimeter of the circle which can be formulated as

∆v = 2πR/300 ≈ 0.021R (4.35)

Figure 4.7: Approximation of Circular Arc to Bezier Curve

The bezier curve may then be constructed using the four points P1, P2, P3, and P4.
The accuracy of the curve in representing the circular arc is determined from the maxi-

mum peak radius r of the constructed bezier curve measured to the radius R of the specified
circle

r

R
= 1− dL

R
≤ 0.99 (4.36)

If this ratio is smaller than the set value 99%, the length g of the tangents may be
increased again by ∆v, and a new Bezier curve is constructed.

This procedure is repeated until r/R lies within the accepted level of accuracy. For the
algorithm steps, the user is advised to refer to the appendix (C.1.1) for a complete algorithm
description.

4.7 CONCLUSIONS

In this chapter the concept of manifolds as a higher abstracted representaion of curves is
introduced followed by the concept of homotopy between functions and their applications
on curves as a first degree manifold.

The bezier curve (as a sample of one dimensional manifold) has been discussed in more
detail. Finally a new numerical solution have been introduced for the conversion of any
circular arc into bezier curve of cubic degree.

45

CHAPTER V

COMPUTER GRAPHICS PROGRAMMING

5.1 INTRODUCTION

Graphics programming is the process of sending commands to the computer graphic card
for the sake of displaying geometrical shapes on the computer screen. There are two famous
libraries for drawing 3D objects, DirectX (which is a microsoft technlology), OpenGL (which
is a de-facto standard). In this thesis OpenGL library has been choosed to accomodate the
requirements for the thesis software package.

OpenGL is a software interface to graphics hardware. The interface consists of about 150
distinct commands that are used to specify the objects and operations needed to produce
interactive three-dimensional graphics.

OpenGL is designed as a streamlined, hardware-independent interface to be implemented
on many different hardware platforms. To achieve these qualities, no commands for per-
forming windowing tasks or obtaining user input are included in OpenGL. Instead, one
must work through whatever windowing system that controls the particular hardware be-
ing used. Similarly, OpenGL doesn’t provide high-level commands for describing models of
three-dimensional objects. Such commands might allow one to specify relatively complicated
shapes such as automobiles, parts of the body, airplanes, or molecules. With OpenGL, the
desired model must be built up from a small set of geometric primitives - points, lines, and
polygons.

A sophisticated library that provides these features could certainly be built on top of
OpenGL. The OpenGL Utility Library (GLU) provides many of the modeling features, such
as quadric surfaces and NURBS1 curves and surfaces. GLU is a standard part of every
OpenGL implementation.

First section of this chapter begins the discussion of OpenGL philosophy in drawing 3D
objects, then goes through OpenGL Pipe Line and define some important OpenGL intrinsic
keywords.

Second section deals with the concept of representing complex 3D objects into memory
by defining the word Model. Models are the conceptual entities that are stored in the
computer memory, which needs special attention to map precisely between what is seend on

1Non-Uniform Rational Basis Spline (NURBS) is a mathematical model commonly used in computer
graphics for generating and representing curves and surfaces. It offers great flexibility and precision for
handling both analytic (surfaces defined by common mathematical formulae) and modeled shapes.

47

the screen and what is stored in the computer RAM.
Final section in this chapter discuss model snappings. The snapping of line is always

expressed by its first and end points. The section will illustrate the mathematical model
behind finding the tangent point, first and end points of the shape under the mouse.

5.1.1 OpenGL as A State machine

OpenGL is a state machine, in the sense that various states (or modes) that are put into
it remain in effect until changed. For example, the current color is a state variable, that is
used in drawing every object until explicitly changed. The current color is only one of many
state variables that OpenGL maintains. Other state variables control such things as the
current viewing and projection transformations, line and polygon stipple patterns, polygon
drawing modes, pixel-packing conventions, ... etc. Many state variables refer to modes that
are enabled or disabled with the command glEnable() or glDisable().

Each state variable or mode has a default value, and at any point one can query the
system for each variable’s current value. Typically, one of the six following commands may
be used to do this: glGetBooleanv(), glGetDoublev(), glGetFloatv(), glGetInte-
gerv(), glGetPointerv(), or glIsEnabled(). Some state variables have a more specific
query command such as glGetLight(), glGetError(), or glGetPolygonStipple(). In
addition, one can save a collection of state variables on an attribute stack using glPushAt-
trib() or glPushClientAttrib(), temporarily modify them, and later restore the values
with glPopAttrib() or glPopClientAttrib(). For temporary state changes, these com-
mands should be used rather than any of the query commands, since they are likely to be
more efficient.

5.1.2 OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of processing
stages called the OpenGL rendering pipeline. This ordering, as shown in Fig. (5.1), is not a
strict rule of how OpenGL is implemented but provides a reliable guide for predicting what
OpenGL will do.

Geometric data (vertices, lines, and polygons) follow the path through the row of boxes
that includes evaluators and per-vertex operations, while pixel data (pixels, images, and
bitmaps) are treated differently for part of the process. Both types of data undergo the
same final steps (rasterization and per-fragment operations) before the final pixel data is
written into the framebuffer.

Framebuffer[59] is the portion of memory reserved for holding the complete bit-mapped
image that is sent to the screen. Typically the frame buffer is stored in the memory chips
on the video adapter. In some instances, however, the video chipset is integrated into the
motherboard design, and the frame buffer is stored in general main memory.

48

Figure 5.1: OpenGL 1.1 Pipe Line[60]

In the following, a quick review of the various processes of the OpenGL pipeline shown
in Fig. (5.1) is presented.

a- Display Lists

All data, whether describing geometry or pixels, can be saved in a display list for current
or later use. (The alternative to retaining data in a display list is processing the data
immediately - also known as immediate mode.) When a display list is executed, the retained
data is sent from the display list in the next process just as if it were sent by the application
in immediate mode.

b- Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces
may be initially described by control points and polynomial functions called basis functions.
Evaluators provide a method to derive the vertices used to represent the surface from the
control points. The method is a polynomial mapping, which can produce surface normal,
texture coordinates, colors, and spatial coordinate values from the control points.

c- Per Vertex Operations and Primitive Assembly

The "per-vertex operations" stage, converts the vertices into primitives2. Some vertex data
(for example, spatial coordinates) are transformed by 4 x 4 floating-point matrices. Spatial
coordinates are projected from a position in the 3D world to a position on the screen.

If advanced features are enabled, this stage is even busier. If texturing3 is used, texture
coordinates may be generated and transformed here. If lighting is enabled, the lighting cal-

2Primitives are ways that OpenGL interprets vertex streams, converting them from vertices into triangles,
lines, points, and so forth.

3A texture is an OpenGL Object that contains one or more images that all have the same image format.

49

culations are performed using the transformed vertex, surface normal, light source position,
material properties, and other lighting information to produce a color value.

Clipping, which is the process of eliminating unseen portions of geometry that fall outside
the viewed space, or in case that is defined by a plan, considered a major part of primitive
assembly.

Point clipping simply passes or rejects vertices. Line or polygon clipping can add addi-
tional vertices depending upon how the line or polygon is clipped.

The viewport and depth (z coordinate) operations are then applied in the perspective
division which makes distant geometric objects appear smaller than closer objects.

If culling4 is enabled and the primitive is a polygon, then it may be rejected by a culling
test. Depending upon the polygon mode, a polygon may be drawn as points or lines.

The results of this stage are complete geometric primitives, which are the transformed
and clipped vertices with related color, depth, and sometimes texture-coordinate values and
guidelines for the rasterization step which is reviewed below.

d- Pixel Operations

While geometric data take one path through the OpenGL rendering pipeline, pixel data take
a different route. Pixels from an array in system memory are first unpacked from one of a
variety of formats into the proper number of components. Next the data is scaled, biased,
and processed by a pixel map. The results are clamped and then either written into texture
memory or sent to the rasterization step.

If pixel data is read from the frame buffer, for further processing, pixel-transfer operations
(scale, bias, mapping, and clamping) are performed. These results are then packed into an
appropriate format and returned to an array in system memory.

There are special pixel copy operations to copy data in the framebuffer to other parts of
the framebuffer or to the texture memory. A single pass is made through the pixel transfer
operations before the data is written to the texture memory or back to the framebuffer.

e- Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make
them look more realistic. If several texture images are used, it’s wise to put them into texture
objects so that you can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture per-
formance. There may be specialized, high-performance texture memory. If this memory
is available, the texture objects may be prioritized to control the use of this limited and
valuable resource.

4Triangle primitives after all transformation steps have a particular facing. This is defined by the order
of the three vertices that make up the triangle, as well as their apparent order on-screen. Triangles can be
discarded based on their apparent facing, a process known as Face Culling.

50

f- Rasterization

Rasterization is the conversion of both geometric and pixel data into fragments. Each frag-
ment square corresponds to a pixel in the framebuffer. Line and polygon stipples, line width,
point size, shading model, and coverage calculations to support antialiasing are taken into
consideration as vertices are connected into lines or the interior pixels are calculated for a
filled polygon. Color and depth values are assigned for each fragment square.

g- Fragment Operations

Before values are actually stored into the framebuffer, a series of operations are performed
that may alter or even throw out fragments. All these operations can be enabled or disabled.

The first operation which may be encountered is texturing, where a texel (texture ele-
ment) is generated from texture memory for each fragment and applied to that fragment.

In addition to the texturing, there are other operations that can be calculated:

• Scissor Test: The Scissor Test is a Per-Sample Processing operation that discards
Fragments that fall outside of a certain rectangular portion of the screen.

• Alpha Test: The alpha test discards a fragment conditional on the outcome of a com-
parison between the incoming fragment’s alpha value and a constant value.

• Stencil Test: The stencil test conditionally discards a fragment based on the outcome
of a comparison between the value in the stencil buffer at location (xw, yw) and a
reference value.

• Depth Buffer Test: The depth buffer test discards the incoming fragment if a depth
comparison fails (the depth buffer is for hidden-surface removal).

Failing an enabled test may end the continued processing of a fragment’s square. Then,
blending, dithering, logical operation, and masking by a bitmask may be performed.

Finally, the thoroughly processedfragment is drawn into the appropriate buffer, where it
has finally advanced to be a pixel and achieved its final resting place.

5.2 GRAPHICAL OBJECT MODEL

Drawing separate points and lines doesn’t have a specific meaning until its being encapsulated
into a higher conceptual entities. The Graphical Model is the higher conceptual entity that
logically contains more than one point, or surfaces group that act as a unique entity.

This unique entity is transforming as a whole object, and it contains a specific information
like center of gravity, or the color of its subset elements.

The graphical model undergoes a whole transformation of its sub elements and act as a
one object throughout the life of the running program.

51

5.2.1 Graphical Model Naming

There are two naming (coding) of the graphical model when running into the program, used
to distinguish between models in memory. The first name is a color name that consists of 4
bytes. The second name is a universal unique name generated by GUID (Globally Unique
Identifier) used in offline sessions and when saving and retrieving the model into the current
program.

Color Name

This special naming is done automatically for each newly created model in the viewport.
The name is used in the viewport operations like sensing the model under mouse.

This name consists of four bytes that are corresponding to Red, Green, Blue, and
Alpha components (or RGBA). The 32 bit naming buffer can hold numbers from 0 to
232 = 4, 294, 967, 296 or more than 4 billion identifier which is very sufficient to store our
models in the viewport.

Universal Name

The universal naming is generated randomly by a GUID number (Globally Unique Identi-
fier). The term GUID typically refers to various implementations of the universally unique
identifier (UUID) standard.

GUIDs are usually stored as 128-bit values, and are commonly displayed as 32 hex-
adecimal digits with groups separated by hyphens, such as {21EC2020-3AEA-1069-A2DD-
08002B30309D}. GUIDs generated from random numbers sometimes contain 6 fixed bits
saying they are random and 122 random bits; the total number of unique such GUIDs is
2122 or 5.3×1036. This number is so large that the probability of the same number being gen-
erated randomly twice is negligible; however other GUID versions have different uniqueness
properties and probabilities, ranging from guaranteed uniqueness to likely non-uniqueness.
Assuming uniform probability for simplicity, the probability of one duplicate would be about
50% if every person on earth owned 600 million GUIDs.

The universal name is very important when saving and retrieving the models to a persis-
tent sorage (i.e. files on disk). Due to the expected widespread usage of the thesis software,
people may share their created geometries with each other, and may also accumulate their
work together. Dealing with this naming of models will allow a future integration between
all of these people and all of their master pieces.

5.2.2 Picking Viewport Models

Selection of models in viewport5 incorporates the process of knowing the model under the
mouse tip. In CAD programs, it is also required to sense the model under the mouse while

5A rectangle on the raster graphics screen (or interface window) defining where the image will appear,
usually the entire screen or interface window.

52

the mouse is moving, and to highlight this model to notify the user that this model is ready
to be selected. an example of models that need to be selected and move around in the
viewport, are the control points of bezier curve.

In the process of modifying the bezier curve shape, two operations are needed. First
operation is to click on the bezier curve, this brings out the bezier control points and display
them on the viewport. Second operation is to move it by dragging the control point with
mouse. The dragging operation is defined as (Mouse Button Down -> Mouse Move ->
Mouse Button Up (Release)). During this dragging operation, the control point is following
the mouse movement to any location the user desires.

Figure 5.2: Back Buffer (Color Naming View)

The mechanism of knowing which model is under the mouse is done through a color
picking technique. This technique has been first mentioned in the OpenGL Red Book[59].
The whole process is done in the OpenGL Frame Buffer with one special rule that this buffer
will never make it to the user eyes as shown in Fig. (5.2), this buffer is only intended to
render the current scene with the color naming of the model.

The graphical picking algorithm can be summarized as follows:

• Draw the models with their associating naming colors Fig. (5.2).

• Read the pixel where the mouse tip location is pointing at.

• Process this color and get the corresponding memory model for this color.

• Notify the model that it is now under the mouse to do its associated behaviour.

53

• Do NOT swap buffers, otherwise the user will see the color coding.

• Render the models again as normal into the back buffer and present this buffer to the
user Fig. (5.3).

Figure 5.3: Presented Buffer User View

5.2.3 Models Interactive Operations

The viewport is a living space, each model in the space can sense the mouse movement over
its representing shape, and respond to this movement. When the mouse goes near any model
in the view port, this model will respond to the mouse pointer by highlighting itself to notify
the user that it can be selected by the mouse left button.

Figure 5.4: Highlighted Inner Circle.

54

Fig. (5.4), illustrate two circles (outer, and inner), the inner circle is highlighted by a
thick represented line due to the mouse tip approach to its shape. While Fig. (5.5) illustrate
the same two circles but with highlighted outer circle.

Figure 5.5: Highlighted Outer Circle

Highlighting Algorithm can be done by taking care of the model selection buffer6. The
shape thickness in the selection buffer is intentionally increased to 3 points more than the
usual drawing of 1 point thickness7 to ensure more thick shape edges higher than default
value of 1.

Figure 5.6: Thick Shapes in Selection Buffer as seen by mouse.

Fig. (5.6), illustrate two circles with thick shape edges that are rendered in the Selection
Back Buffer. The mouse hovering on the edge will result in knowing that the mouse got near
the shape and a visual feedback to the user can take place.

6Selection Buffer here is referring to the pass that all models are rendered with their naming colors.
7Thickness value representation is a hardware and driver responsibility.

55

Figure 5.7: Normal Shapes in Presented Buffer as seen by user.

Fig. (5.7), illustrate the same two circles but in their final viewing form on the screen.
The two circles state now are not selected nor being approached by the mouse pointer.

5.3 MODEL SNAPPING OPTIONS

Snapping while drawing is a vital functionality in the CAD applications in general. Whenever
the user tries to connect two lines together, or to pick a certain point over the model topology,
Snapping options come in handy to make it easier for the user to perform such task.

There are three snapping options implemented in the current study:

• Nearest Point Fig. (5.8).

• Start - End Points Fig. (5.9).

• Middle Point Fig. (5.10).

When one or more of these snapping options is enabled, a red point is highlighted near the
mouse pointer during its movement to indicate that the active point is the current snap
point.

Figure 5.8: Nearest Point Snapping

56

The snapping options also differ in behaviour when applied to certain shapes. For example
the circle doesn’t have start-end points but it has a near point that can be calculated, also
the middle point snapping can be applied to the circle center point.

Figure 5.9: Snapping to first, and last points of the curve

Figure 5.10: Middle Point Snapping

5.3.1 Snapping Options Calculations

Each shape model has a different algorithm in calculating its snapping points. Giving the
fact that the snapping point is only calculated when the mouse pointer is near the shape and
lie on its terriority, the first information of the current location of mouse pointer is obtained.

From this location, the nearest point of the shape is calculated depending on the shape
type, following that step, the program checks if the snapping option of start-end, or middle
points are checked and then calculate their values.

There are four distinct shapes that are supported in this thesis:

• Line

57

• Circle

• Bezier Curve

• Arc

5.3.2 Line Segment

Nearest Point

The nearest point can be calculated from the first point of the line x1, y1 to the location of
the near point px, py as illustrated in Fig. (5.11).

Figure 5.11: Nearest Calculation for Line Segment

Considering that the mouse point is too close to the line, the α angle is very small, and
can be neglected, hence the mouse point location can be considerd lieing on the line itself. for
this situation the length between the projection of p on the line at rx, ry can be considered
nearly equal the length between the point p and x1, y1.

The calculation algorithm is done as follows:

• Length between mouse point and the line first point is determined as

|p− (x1, y1)| (5.1)

• Calculting the parameter of the parameteric equation of the line is calculated as

t = |p− (x1, y1)|
|(x2, y2)− (x1, y1)| (5.2)

• substituting the parameter t in the line parametric equation

(rx, ry) = r (t) = x (t) + y (t) (5.3)

giving the exact location for r.

• The point on r is then highlighted with red to the end user.

58

First-End Points

If this snapping option is enabled as shown above, a simple comparison is done over the
calculated parameter t. If t > 0.5 then the snapping point is calculated based on the last
point location of the line r = (x2, y2), and for t < 0.5 the snapping point is calculated based
on the first point of the line r = (x1, y1).

Middle Point

The middle point discovery also depends on the information of the mouse point that is very
near to the line. In this case the line parametric equation is calculated by giving 0.5 as a
parameter (rx, ry) = r (0.5) = x (0.5) + y (0.5).

5.3.3 Circle

To calculate the near point, a parametric equation for the circle is obtained through the
entire shape. The parametric equation should begin from 0 and ends with 1, a conversion is
made by multiplying with 2π

r = r (s) = x (s) + y (s) = ρ cos (s) + ρ sin (s) (5.4)

Where s = 0→ 2π, ρ is the circle radius.
again the mouse pointer is near the circle edge which can be considered that the mouse

pointer is approximately over the circle shape line. Calculating the r point Fig. (5.12), on
the circle from p mouse location point can be summarized in the following algorithm:

• Determining the angle α between vector p− c and x axis.

• s = α/2π

• r =

 r (s)

r (−s)

py > 0

py < 0

Figure 5.12: Circle Tanget Snapping

59

5.3.4 Bezier Curve

To find the near point of the bezier curve, giving that the mouse point location is near the
curve edge; a digital algorithm is conducted to discover the parameter of curve (that lies
between 0→ 1).

The problem with bezier curve is that they lack a central point like circle, instead its cur-
vature is changing all over its path line. The algorithm depends on the error approximation
between the mouse point and curve point in such that giving the minimum length between
the two points. The condition that satisfy the minimum length between the two points will
be selected as the nearest point.

Figure 5.13: Bezier Curve Nearest Point

Minimum length between mouse location and curve point is calculated as seen in Fig.
(5.14) by determining the shortest path between mouse and curve.

• WHILE (δe > 0.1)

– Increase parametric value s with ∆s

– Calculate δnew = |rs − p|

– if the new length > δe then decrease the value of ∆s by half and back to previous
step.

• END

60

Figure 5.14: Bezier Curve Nearest Point Suggested Locations

The algorithm ends when the δe error is being between 0→ 0.1, and the corresponding
r = rs is selected as the desired nearest point.

Snapping for first-end, and middle points is simply obtained by substitiuing the para-
metric equation of curve with 0, 1, and 0.5 values.

5.3.5 Circular Arc

Considering the Arc as a subset of the circle, with three points, center of the arc, first point,
and last point. When mouse goes near the arc the arc is highlighted and then the snapping
calculation takes control if enabled.

Figure 5.15: Arc Snapping Calculation

The nearest point (b) is always near the arc, however the interest of the arc is to obtain
the first and last points of the arc. This can be calculated by the following algorithm:

• Obtaining Normalized Vectors c̃a = a− c, ~cb = b− c, ~cd = d− c

• Calculating the total arc angle θtotal between c̃a, and ~cd.

• Calculating the angle θacb between c̃a, and ~cd.

61

• Calculating the fraction s = θacb

θtotal
.

• if s < 0.5 highlight first point

• if s > 0.5 highlight last point.

5.4 CONCLUSIONS

In this chapter the OpenGL library for 3D graphics visualization has been introduced. The
model concept of graphical representation has been disucssed.

Selection of models in viewport and sensing the mouse locations has been discussed with
their corresponding algorithms.

Finally, snapping of points in certain shapes have been introduced to illustrate how CAD
programs respond to the mouse pointer movement on the screen.

62

CHAPTER VI

GRIDDING ALGORITHMS AND OPERATIONS

6.1 INTRODUCTION

The gridding technique in this chapter assumes the ability to divide the fluid flow domain
into quadratic shapes. The partitioning process is a user specific task that aims at providing
a grid with the appropriate properties discussed in Chapter II, and III. (regions that contain
empty spaces and have their edges as bezier curves) as shown in Fig. (6.1).

The chapter discusses the gridding operation of the quadratic shapes in addition to the
special algorithms for making two dimensional and three-dimensional grids.

The algorithm goes into the domain partitions and create the grid lines based on the user
input of the number and concenration of cells in these regions.

Section 6.2 discusses a single quadratic shape, and how the gridding operation is carried
out on this shape to get the desired grid. After that, the discussion goes through the
concentration of the grid lines in terms of expansion and contration of lines based on single
or double stretching functions.

In Section 6.3 The connectivity between neighbouring quadratic shapes is discussed. This
calls for special attention as it plays a crucial role in extrusion and rotation of quadratic shape
grid.

Section 6.4 discusses the operation of creating three dimensional grids (Hexahedral Cells)
from two dimensional grids (Quadrilateral Cells) with the aid of extrusion and revolving of
the quadrilateral grids created earlier.

Finally, a special algorithm is discussed for revolving axisymmetric shapes to obtain
hexahedral cells from rotating the domain a 90 degree around the axis of symmetry.

6.2 TWO-DIMENSIONAL GRIDDING OPERATIONS

Fig. (6.1), shows a flow domain divided into 6 shapes, intended to be covered with quadratic
cells. The sides of quadratic shape in Fig. (6.2a), sides (a), (b), (c), and (d), are bezier
curves with four control points each. This allows the quadratic shape to take many shapes
by modifing the control points of the bezier sides. The shapes can be circles, rectangles, or
even hyperbolic curves.

63

Figure 6.1: Partioned Flow Domain

(a) Empty Quadratic Shape (b) Gridded Quadratic Shape

Figure 6.2: Empty and Gridded Quadratic Shape

Fig. (6.2b), shows the quadratic shape after gridding, the process is discussed below.

6.2.1 Linear Gridding

First attempt in gridding the quadrilateral shape is carried out using direct lines calculations
between two opposite sides of the shape. The calculated lines Fig. (6.3a) between (d), and
(b) curves, serves as the starting point for the calculation of the transversal curve points
between (a), and (c) Fig. (6.3b).

64

(a) Straight Lines Calculations (b) Second Step Transversal Curves Cal-
culations

Figure 6.3: Linear Gridding

A major problem in this technique lies in the use of the straight lines generation itself. In
the case of too many cells, the generated lines may overlap the other opposite curved sides
as shown in Fig. (6.4).

Figure 6.4: Overlapping of Straight Lines

This problem however can be solved by using homotopy between functions of the quadratic
shape sides as will be illustrated next.

6.2.2 Homotopy and Gridding Operations

Gridding the quadrilateral shape is carried out using homotopy between the quadratic equa-
tions representing the opposite bezier curves (a/c) or (b/d), Fig. (6.5). First, homotopy is
done between curves (a), and (c) in terms of the parametric equations discussed in Sec. 4.5,
resulting in new unadjusted curves (a’, c’) as shown in Fig. (6.5).

The number and locations of these curves are determined by the user depending on how
many rows and columns of cells should the quadrilateral shape contain. The unadjusted

65

curves do not necessarily end and/or start on curves (b), and (d) as shown in Fig. (6.5).
These curves have to be adjusted to begin and terminate exactly on curves (b) and (d).

Figure 6.5: Two Un-adjusted Curves at 0.1, and 0.9 between Top and Bottom Curves

Adjustment is carried out by locating the terminal points of curves a′, and c′ on curves
(b) (P1, P2), and on (d) (P3, P4) using the values of parameter t in Equ. (4.12, 4.13) used
to create the curves (a’, c’). The Bezier curves a’, and c’ are recalculated using the new
terminal points as shown in Fig. (6.6).

Figure 6.6: Two adjusted curves at 0.1, and 0.9 between Top and Bottom Curves

After adjusting all generated curves between (a), and (c) with reference to curves (b),

66

and (d) the quadrilateral shape will have all of its inner curves finalized as shown in Fig.
(6.7).

Figure 6.7: All adjusted curves (a), and (c), in quadratic shape

The last step of gridding the quadrilateral domain is to calculate the inner transversal
curves between curves (b), and (d). This process is easily done by using the previous adjusted
curves as follow; Beginning with curve (a) going through inner curves until reaching curve
(c):

• Calculate a point on each curve at the known value of t (ranging between 0→ 1) based
on the current location of desired curve.

• After calculating all transversal points Fig. (6.8), a transversal curve is generated by
connecting these points together by straight lines.

• This operation is repeated again with different values of t until the area from curve (b)
to curve (c) is covered.

Figure 6.8: Transversal Points Calculation

67

Finally after all points are connected transversally, the whole quadrilateral shape is now
fully gridded into quadratic cells as shown in Fig. (6.2b).

The function responsible for making the homotopy curve between curves (a), and (c),
and adjusting its terminals on curves (b), and (d) is listed in App. (C.2.1).

6.2.3 Enhanced Homotopy Gridding

Moving the terminal points of the bezier curve changes the curve profile to accomodate to
the desired shape Fig. (6.9a). However, a more accurate adjustment of the curve profile is
further needed to get a smoother transition by moving the two middle points of the bezier
curve as shown in Fig. (6.9b).

(a) Homotopy curves after adjusting
terminal points

(b) Homotopy curves after adjusting the
middle points for smoother transition

Figure 6.9: Enhancing intermediate curves smoothness

The algorithm used in modifying the middle points Fig.(6.10) of the generated cuve can
be summarized as follows:

• Length between terminal points P0 and P1 is determined L01 = |P0P1|.

• Terminal point P0 is then transformed to the side curve at its designated location.

• The length between the new point and middle point is determined L′01 =
∣∣∣P ′0P1

∣∣∣.
• Ratio between new length and old length is obtained r = L

′
01/L01.

• Point P1 location is extended along the line P0P1 with the calculated ratio r.

• Point P2 location is extended along the line P1P2 with the calculated ratio r.

• The same steps are repeated for points P3 and P2 along the lines P3P2, and P2P1 with
the same ratio (accumulated over previous calculations).

68

Figure 6.10: Enhanced Homotopy by Middle Points Transformation

6.2.4 Gridding Techniques Comparison

A simple comparison between the three types of gridding techniques is found in the Table
(6.1).

Linear Homotopy Enhanced
Homotopy

Aspect Ratio Max Mean Min
4.596 1.963 1.098

Max Mean Min
2.543 1.766 1.018

Max Mean Min
2.231 1.631 1.004

Skewness Max Mean Min
0.973 0.206 0.013

Max Mean Min
0.520 0.190 0.029

Max Mean Min
0.666 0.255 0.047

Curves
Alignment Very Poor Good Very Good

Table 6.1: Gridding Techniques Comparison

69

6.2.5 Contracting / Stretching Function

The gridding in the quadrilateral shape depends on a stretching function that is based on
geometric series extension, or contraction, represented by:

n−1∑
k=0

ark = a
1− rn
1− r (6.1)

Where,

r Expansion or Contraction Coefficient,

n Number of Grid Lines,

a Series coefficient calculated from total length of 1, and,
∑n−1
k=0 ar

k is the length of the line segment to be divided.

The amount of extension or contraction depends on the value of r in Eqn.(6.1) where 0 < r <

1 is employed for contracting grid, and r > 1 for expanding grid as shown in Fig. (6.11-6.12,
6.13),.

Figure 6.11: Top and Bottom Single Stretched Function

Figure 6.12: Left and Right Single Stretched Function

In case of single concentration stretching function, the values from 0 to 1, or above 1 will
concentrate the lines on specific edge as shown in Fig. (6.11), and Fig. (6.12).

70

Fig. (6.13) Shows double stretching and contracting grids where Eqn. (6.1) is used with
the aid of the current value of r.

(a) Double Stretched gridding in the middle

(b) Double stretched gridding in the edges

Figure 6.13: Double stretched function on quadratic cell

The subprogram written to accomodate grid concentration is listed in App. (C.2.2).

6.2.6 Circle Gridding

To avoid problems associated with poles, circle gridding requires that the center be sur-
rounded by a quadrilateral shape. Accordingly the circle is divided into an inner zone
featured in the square surrounding the center, and an outer zone divided into four regions
as shown in Fig. (6.14). The inner square is then gridded by a suitable number of grid lines
as explained earlier. The outer four regions are also gridded as explained above in Section
(6.2.2) to yield the grid shown in Fig. (6.14b). The circumference of the circle is approxi-
mated by straight lines as shown. The more the number of cells the smoother the resulting
circle circumference. The number of cells in the outer regions is connected with the number
in the inner zone and, thus increasing the number of cells in the outer regions for smoother

71

circle circumference will inevitably increase the number of cells in the inner zone. This may
not always be wise strategy in terms of computational overheads.

(a) Sub Domains (b) Sub Domains Gridded

Figure 6.14: Circle Gridding

6.2.7 Edge Senses and Coding

When gridding the quadratic shapes, there are important aspects of the orientation in the
edges of the bezier curves defining the shape. These orientations (edge senses) if not handled
correctly, would result in a deformed grid shown in Fig. (6.15a).

(a) Deformation in cell due to sense difference between edges

(b) No deformation after applying sense algorithm

Figure 6.15: The effect of sense deformation

The correct gridding can be seen in Fig. (6.15b), which applies the sense algorithm for

72

correcting the generated lines based on the edges senses.
To be able to define the edges senses, a certain coding has been applied to the quadratic

cell to distinguish between the different orientation of the bezier curve.
This was coded as [C, First {Curve Index Point Index}, Second {Curve Index Point

Index}]. For example when C0310 is true, this means that bezier curve at index 0 and the
last control point at index 3 are the same point on the bezier curve of index 1 and first point
on this cuve at index 0, and the orientation of the cell of these coding appears as seen in
Fig. (6.16). The coding of these senses is listed in App. (C.2.3).

Figure 6.16: Quadratic Cell Senses of Upper Points

73

6.3 CONNECTIVITY BETWEEN QUADRILATERAL SHAPES

The grid in the quadrilateral shape has four other quadrilateral neighbours at each side.
These neighbours are sharing their points with this quadrilateral shape. The shared points on
the edges of the quadrilateral shapes are important to acheive the continuity of cell elements
between blocks . The discovery of neighbours is the process of finding the connectivity nodes
(points) between the quadrilateral shapes.

6.3.1 Discovery of Neighbours

Qudrilateral shapes cover the flow domain and share their sides between each other. The
process of finding the neighbours are carried out by iterating over the shape sides, testing if
it is shared to another quadrilateral shape or not, by examining its first and last points.

It is worth mentioning that index of the side on the quadrilateral shape can be different
on the target shape, and it requires a special attention in the gridding between the adjacent
quadrilateral shapes. The code listing that determine the neighborhood quadrilateral shapes
is listed in App. (C.2.4).

6.3.2 Grouping

Grouping of quadrilateral shapes is the next process after discovering the whole connected
neighbours. Grouping is a logical process that tells that those neighbour shapes are indeed
acting as a one unit in transformation.

The grouped quadrilateral shapes always refer to a complete 2D gridded flow domain,
which permits the user to use this grid in further calculations (for more information of the
grouping rechnique the reader may refer to the App. (C.2.5)). The grouping also servers
as the start point of more higher 3D operations like revolving and extrusion to the grouped
shapes.

6.3.3 Gridding between Neighbours

Special attention of grouped shapes should be taken during gridding of any sub quadratic
shape. Continuity of grid lines that passes through the shapes and its neighbours should be
the same number when viewed from any side.

Fig. (6.17) shows five connected shapes having 6x6 cells. when changing the horizontal
number of cells in Shape C, the number of horizontal cells in Shapes B, and D should be
adapted to the same number of cells, as shown in Fig. (6.18).

74

Figure 6.17: Five Connected shapes with 6x6 cells

The same adaptation occur also in the case of changing the vertical number of cells in
any sub quadratic shape as shown in Fig. (6.19).

Figure 6.18: Five Connected Shapes. B, C, and D shapes gridded as 6x20 cells

75

Figure 6.19: Five Connected Shapes A,C, and E Shapes are vertically densed gridded.

6.4 THREE DIMENSIONAL GRIDS

The creation of connected two dimensional grids can be extended into 3D grids by apply-
ing two primary operations, extrusion, and revloving. The two operations will convert the
quadrilateral mesh elements into hexahedral mesh elements (hexahedron element). Hexa-
hedral elements are connected from its points and sharing their side faces with the other
elements. The face is either an internal face with owner and neighbour cell, or external face
(face that can have boundary condition).

6.4.1 Extrusion Operation

Extrusion operation extend the mesh nodes positions with the aid of the normal vector
direction into new nodes with an arbitary length value selected by the user. Segmentation
is applied to the arbitary length to produce layers of the grid nodes, each layer of nodes
connects to the previous and next layer of nodes to form a 3D hexahedral cells from the 2D
quadrilateral grid.

∆v vector for the position node with the arbitary length ∆l, should be calculated as
follow

∆x = ∆l × cos θx = ∆l × v · i
‖v‖‖i‖

(6.2)

76

∆y = ∆l × cos θy = ∆l × v · j
‖v‖‖j‖

(6.3)

∆z = ∆l × cos θz = ∆l × v · k
‖v‖‖k‖

(6.4)

∆v = ∆x i + ∆y j + ∆z k (6.5)

The new grid node position is calculated

vnew = vold + ∆v

This algorithm is applied to all the nodes in the 2D quadrilateral grid.

Figure 6.20: Extrusion Operation

6.4.2 Revolve Operation

Revolve operation revolves the mesh nodes positions with the aid of a rotational axis into
a new nodes with an arbitary angle value selected by the user. Segmentation is applied to
the arbitary angle to produce layers of the grid nodes, each layer of nodes connects to the
previous and next layer of nodes to form a 3D hexahedral cells from the 2D quadrilateral
grid. Quaternions algera are used in applying the rotation as follow:

1. Initial quaternion is calculated based on the axis and zero angle

2. Final quaternion is calculated based on the axis and final angle

3. Total quaternion is calculated by multiplying initial and final quaternions.

77

4. Total rotation matrix is obtained from the total quaternion.

5. The rotation matrix is multiplied with the node coordinates to obtain the new coordi-
nates after rotation.

Figure 6.21: Revolve Operation around y-axis of a gridded circle

Figure 6.22: Extrusion with Twising

6.4.3 Auxilary Operations

Two auxilary operations can be accumulated to the extrude, and revolve basic operations.
Twisting, and scaling operation are used to control the resultant 3D geometry.

6.4.3.1 Twisting Operation

Twisting operation revolve the mesh nodes around the normal axis Fig. (6.22).

78

6.4.3.2 Scaling Operation

Scaling operation expand or contract the layer nodes to the normal axis. Fig. (6.23).

Figure 6.23: Geometry Double Scaling

6.4.4 Axisymmetric Operation

Axisymmetric operation is done on the 2D grids that one if its sides completely lies on the
x-axis Fig. (6.24). These points are considered singularity points. The grids of this types
can be rotated as follow:

1. Grid rows to be divided into lower and upper parts with 6:4 ratio respectively.

2. Singular point is at y = 0 and will not be rotated.

3. Ceiling point of the lower part rotated two times with half and complete angle respec-
tively, forming two lines.

4. Ceiling point of the upper part rotated with the required amount of segments to form
the upper ceiling nodes.

5. The grid lines are being connected from the lower part to the upper part forming one
grid face for one grid column. Fig. (6.25).

6. The operation is repeated for all columns of the two dimensional grids.

79

7. The generated faces are then connected to form hexahedreal grid. Fig. (6.26).

Figure 6.24: Two Dimensional Grid on x-axis

Figure 6.25: First Column Grid Face

80

Figure 6.26: Axisymmetric Grid

6.5 CONCLUSIONS

In this chapter, the generation of two-dimensional grid between four curves has been dis-
cussed and illustrated using the homotopy between the curves. The four curves form a
quadrilateral sub-domain. The sub-domain needs to discover the grid points of its neigh-
bouring sub-domains and connect its points with them. Neighbour discovery and grouping
of sub-domains have been discussed throughout the chapter. Finally, the three dimensional
grid creation algorithms and operations have been illustrated and discussed.

However, the final grid distribution and intensity depend almost entirely on the experi-
ence and his attempt to acheive high quality grid from the computational point of view. No
standard quality measures are known for grid generation software, the quality of the grid is
judged by the performance of the solver of the governing equations, i.e., accuracy, rate of
convegence, and stability.

81

CHAPTER VII

PROGRAM STRUCTURE AND CASE STUDIES

7.1 INTRODUCTION

In this chapter, the program features are presented and discussed in detail. This aims
at explaining and demonstrating the various functionalities of the software. Case studies
have been carefully selected to illustrate the package performance and agility in drawing
hexahedral grids. No specific dimensions were attached to the geometries presented since
the objective of the excersice is to illustrate the sequence with which the grid could be
generated in different cases.

Figure 7.1: Software Main Screen

This software program adheres to the block structured technique. The technique requires
that the domain be divided into a number of sub-domains contained within four curves each.
These sub-domains in essence, serve as the starting point of the gridding operation which

83

requires the user to select the four points that enclose each sub-domain. When the user
completes the selection of four points, a grid appears in that block and connects itself with
the neighbour block grid if existed from a previous operation.

Functions of saving the work done into external files and retrieving it along with com-
pleted grids are of great value to the program user. The program has the ability to export
the final grid into two commercial package formats namely Fluent Ansys®, and Pro Star®.
This can be extended to any number of commercial packages if needed.

The chapter is divided into two main sections, the first describes the user interface menus
and icons of the most important parts that serve as the key concepts to the software usage.
The second section contains a number of case studies carefully selected to demonstrate the
capabilities of the developed software program.

Case Studies have been split into two categories. First category include some basic
shapes involving simple operations needed for grid generation. Second category contains
more complex shapes that require a more careful handling from the user.

7.1.1 Program Structure and Layout

Immediately after opening the program, the main screen Fig. (7.1) appears. The program
main screen is divided into disctinct areas. These areas are being discussed on the following
sections.

7.1.2 Ribbon Menu Bar

This is the Ribbon Menu Bar. This menu adheres to the latest microsoft guide lines of UI
(User Interface) experience by employing the Ribbon Menu concept that can be found in the
latest editions of Microsoft Office® and built in programs of Windows® operating system.

Figure 7.2: Ribbon Menu Bar

The menu Fig. (7.2) contains the following titles:

File File Operations Menu

Home Main drawing functionalities

Viewport Functionality related to the appearence of the shapes and grid.

2D Gridding Functions of creating two dimensional grids.

Extrusion Functions of extruding the two dimensional shapes into three dimensional ob-
jects.

84

Revolving Functions of creating three dimensional objects by rotation of two dimensional
shapes around certain axes.

Boundaries Functions of specifying and selecting the boundary conditions of the final grid.

Post-Gridding Special functions that only applied to the final three dimensional grids.

7.1.3 Operations Area

This area Fig. (7.3) is the one that most of the work is done into it. This area supports
automatic docking of its windows for more flexibility in adjusting the area based on the user
prereferences.

Figure 7.3: Operation Area

Fig. (7.4) shows the complete opened tool windows. The System Console window is
a special window for showing messages to the user during his work with the program in
addition to any warnings.

Quantity System window is an expression evaluator window that can make quick cal-
culations through writing mathematical experssions like 4*sin(30<deg>). The window also
can access the viewport models by their names and can call certain functions that aren’t
available on the user interface. However rest of the tool windows are discussed in general in
the next sub sections.

85

Figure 7.4: Opeartion Full Area Sides

7.1.3.1 Viewport and Models Windows

This is the window Fig.(7.5) that any drawing take place on. It supports the user interaction
with mouse during drawing and viewing the shapes and 3D objects. In addition the Models
windowlist all models that appears in the viewport drawing area. Clicking on model in this
window will select this model to view its properties in the properties window.

Figure 7.5: Viewport and Models windows

86

7.1.3.2 Properties Window

This window display a list of the available properties of the currently selected model. Fig.
(7.6) shows the properties of MorphedQuad model. This object for example has its M and
N Properties set to 10. This window update itself whenever the user selects a model from
the viewport window or the models window.

Figure 7.6: Model Properties Window

7.1.3.3 Cell Properties Window

This window Fig.(7.7) display the properties of selected face element on the final 3D grid to
view its properties.

Figure 7.7: Cell Properties Window

87

7.1.3.4 Grid Properties

This window Fig. (7.8) display the grid data stored internally in the program. These data
include number of cells, faces, and nodes of the selected grid, in addition to the ability
to export the data to the various programs packages. The tabular view can be copied and
pasted into excel files also. The window display a detailed information about the grid points,
faces, and cells. It also point out the internal and boundary faces.

Figure 7.8: Grid Properties Window

7.1.4 Task Bar Area

This area Fig. (7.9) contains the important information about the current operation progress
and the drawing snapping options of points while drawing. The program features two
progress bars that shows main operations in addition to sub operations in case of such
ones.

The left part of task bar shows the current coordinate projection on the viewport for
helping the user to know the current mouse location. The snapping options of points are
very important during working with shapes for creating two dimensional grids and connecting
shapes together. Snapping is the process of highlighting certain points on the shapes while
mouse is moving over them. These points serve as connection nodes between shapes, and
grids. Following are a breif description for each snapping option and its usage:

88

Edges Highlight the start, and end points of lines, bezier curves, and circular arcs, in
addition to the corner points of Morphed Quad1 objects.

Middle Highlight the middle point of supported shapes.

Nearest Highlight the nearest point to the mouse that lie on the shape.

Grid Highlight the nodes found on the 3D grid visible surfaces.

Figure 7.9: Task Bar Area

7.2 PROGRAM MENUS

7.2.1 File Menu

File menu as shown in Fig. (7.10) contains the basic operations file management. New,
Open, and Save commands are for clearing, retrieving files, and saving them.

Figure 7.10: File Menu

There are also the Export functionalities into ParaView VTK format, Pro Star format,
and finally Ansys Fluent format. The program also has the ability to import and view

1Morphed Quad (Morphe Quadrilateral) are the foundation shape for building 2D Grids.

89

common 3d file formats of STereo Lithography® (stl) and Wavefront® (obj) files2. Solid
Models that contains the 3D grids can export its surface into the STereo Lithogtaphy® (stl)
format as shown in the menu.

7.2.2 Home Menu

Home Menu is the primary menu of drawing sketches on the base grid plane.

Figure 7.11: Home Menu

7.2.2.1 2D Sketching

Line Segmets Draws line segments with two points.

Lines Strips Draw line strips (many lines connected in their first and end points with other
lines).

Bezier Curve Draw a bezier curve with 4 control points.

Circle Draw circles with center point and radius point.

Sphere Draw a sphere with center and radius point.

Hybrid Line A special modeling that draws line strips in addition to bezier curves in the
same object.

7.2.2.2 Parametric Sketching

Parametric Curve This button is used to enter an arbitary curve equation F (t) = x(t)i +
y(t)j + z(t)k where t = [0, 1]

Parametric Surface This button is used to enter arbitary surface equation is on the form
F (u, v) = x(u, v), y(u, v), z(u, v) where u, v = [0, 1]

7.2.2.3 Air Foil

This button allows the access of massive database of common airfoil profiles Fig. (7.12) that
can be selected to appear on the viewport.

2The program can only view these files, however there is no support of editing them or creating automatic
meshes.

90

Figure 7.12: Air Foil Profiles

7.2.2.4 Plane Image

The program has the ability to load an image from the file system to display it on the
drawing grid Fig. (7.13). The use in return can draw over this imported image to form the
required sketch and grid.

Figure 7.13: Drawing Grid Plane Image

91

7.2.3 Viewport Menu

Viewport is the area in the program where sketching and gridding take place. This area
contains also the drawing plane which receive mouse movements and clicks.

Figure 7.14: Viewport Menu

7.2.3.1 Viewport Movement

Orbit Rotating of the viewport around it self3. The same functionality can be achieved by
holding SHIFT while draggin the mouse around.

Pan Translating of the whole viewport to the right, left, up, or down. The same functionality
can be achieved by holding SHIFT+CTRL while dragging the mouse.

7.2.3.2 Base Drawing Plane

The base drawing plane is the visual representation of the current drawing plane. The
drawing plane can be shifted up or down by changing the Shift field value. The drawing
plane can be set into x-y, x-z, and y-z planes, this allows more flexibility in drawing sketches.
The common properties of Base Drawing Plane are:

Shift move the base grid in the direction of its normal vector above or below based on the
value of shift4.

Plates Count Number of visible tiles.

Grid Width The width the base drawing plane cover in the viewport.

There are also some attributes control the rendering behaviour of the base drawing plane:

Grid Visibility Unchecking this field will hide the base grid from the viewport.

Hide Grid Hair Whenever the mouse move on the grid, there is always a small hair line
that is projected on the drawing plane. In some cases, the user decides to hide this
hair line, he may uses this button.

Grid Snap Mouse movement on the base grid has an infinite precision when grabbing x, y, z
values. Checking this control limit these values into their integer parts.

3The rotation is done by the virtual track ball algorithm.
4The shift value is actually the fourth item in the plane equation ax + by + cz + d = 0, in this equation

shift is the d variable

92

Reset Camera Pressing this button resets all movements that were done on the viewport
and get them back to the original location5.

In addition to the normal rendering, there is a clipping option in the viewport that can be
selected from Clipping Lines as shown in Fig.(7.15).

Figure 7.15: Clipping along x-axis (yz-plane)

7.2.4 2D Gridding Menu

Gridding the sketch involves selection of certain points on the viewport to form up the blocks
that form the complete domain. In order to define these blocks and complete the domain
grid, the user may use the following buttons.

Figure 7.16: 2D Gridding Menu

Block Dimension (M x N) The fields predefine the number of grid cells in the x, and
y-directions.

(4 Point) Cell Creator Pressing this button put the viewport in a state to receive 4 points
to form a cell (block that will be gridded) as shown in Fig. (7.17a).

5Usually this is at x = 0, y = 0, z = −100

93

(3 Point) Cell Creator The same functionality of creating grid but with 3 points and it
generate 3 connected grid blocks as shown in Fig. (7.17b).

Reset Points In circumstances of wrong point selection, this button can reset the process
as if it were no points has been selected yet.

(a) (b)

Figure 7.17: Single Grid Generated from 4 Point, and 3 Point Buttons.

7.2.4.1 Gridding Sequence

Figure (7.18) illustrate the sequence of creating a grid for a simple domain Fig. (7.18a) by:

1. Creating 4 sub-domains.

2. Gridding the 3 sub-domains one after the other using the block see Fig. (7.18c).

(a) Empty Domain (b) Sub Domains Divisions

(c) Final Grid.

Figure 7.18: Grid Creation Sequence

94

After the grid creation and making sure that they are all connected, and adhering to
the required guidelines, the user can click GroupQuadShapes button for grouping these
blocks into one of the closed shapes in the viewport as shown in Fig. (7.19).

Figure 7.19: Selecting the container of the grouped grids.

Once grouping is done, the container shape is now ready for subsequent 3D operations
to complete the desired grid.

7.2.5 Extrusion Menu

Extrusion is the process of conveting the 2D shape into 3D shape. For example the extrusion
of a circle will result into a cylinder by extending the circle points with the aid of the normal
vector, z in this case, to the required height and segmenting this height with the number of
required partitions.

Figure 7.20: Extrusion Menu

7.2.5.1 Basic Extrusion Processes

This is the regular extrusion behaviour and can be controlled by the following field values:

Length The length of the extrusion.

Segments The number of layers covering the extrusion length.

Twisting [−2π, 2π] When applied in degrees, each layer will rotate around the normal vec-
tor of the extrusion with a value = (Twisting Angle / Number of Segments)

95

Scaling [−1, 1] When applied, the points at each layer contract (Scaling < 0), or expand
(Scaling > 0) according to its corresponding point on the normal vector line.

Stretching [0, 2] When applied, the height between layers is changing based on this value to
simulate contraction and expansion between layers. When Stretching > 1 contraction
occur in first layers, while Stretching < 1 result in contraction at ending layers.

Double Stretching This check box change the stretching behaviour to affect both ends
of the extruded shape. When Stretching > 1 contraction occur at the edges , while
Stretching < 1 result in contraction occur in the middle of the extruded shape.

Solid Extrude Extrudes the object with its inner grid that was assigned to it when blocks
were grouped together. The operation produces R3 manifold

Body Extrude Extrudes the 2D shape only which result in a surface of this shape. R2

manifold

Clone Extrude Copys the shape with the given number of segments along the normal
vector.

7.2.5.2 Profile Extrusion

Shapes that are drawn on the x-y plane can be extruded with the guidance of another curve
that is drawn on y-z plane or x-z plane as shown on Fig. (7.21)

Curves Drop down list of all curves that can be used in the profile extrusion process.

Treat as Radial Mesh When this value is true (checked) the extrusion depends on the
radius of the point extruded to get the required height Fig. (7.22).

Figure 7.21: Profile Extrude Process

96

Figure 7.22: Radial Profile Extrude

7.2.5.3 Equation Extrusion

The ability of the user to write arbitary equation for the extrusion Fig. (7.23). The equation
is expecting one parameter r to be written inside the expression. The program will run the
the equation for each point on the mesh by giving its radius value.

Figure 7.23: Extrude by equation 10sin (r/5) + 40

7.2.6 Revolving Menu

Revolving operation can be considered an extrusion process but involve a rotational axis and
an angle of rotation.

Figure 7.24: Revolving Menu

97

7.2.6.1 Basic Operations

The following field values control the revolving process:

Line Axis Dropdown list of available Lines in the viewport that can act as rotation axis,
in addition to the x, y, z axes.

Angle [0, 2π] The whole angle of revolving.

Segments Number of layers.

Twisting [−2π, 2π] When applied in degrees, each layer will rotate around the normal vec-
tor of the extrusion with a value = (Twisting Angle/Number of Segments)

Scaling [−1, 1] When applied, the points at each layer contract (Scaling < 0), or expand
(Scaling > 0) according to its corresponding point on the normal vector line.

Solid Revolve Revolves the shape with its inner grid that was assigned to it when blocks
were grouped together. The operation produce a R3 manifold

Body Revolve Revolves the 2D shape only which result in a surface of this shape. R2

manifold

Clone Revolve Copys the shape with the same number of segments Fig. (7.25).

Figure 7.25: Clone Revolve with angle 360 degree and 8 segments

7.2.6.2 Axisymmetric Revolve

Any grid that has one or more side lying on the x-axis can be reolved axisymmetrically
around the x-axis with 90◦ Fig. (7.26).

A special calculation is taken into consideration for avoiding the singularity point in this
case.

98

Figure 7.26: Axisymmetric Revolve

7.2.7 Boundaries Menu

Boundary conditions are of extreme importance to the CFD analysis. The menu is respon-
sible for selecting the boundary surfaces and assigning them to known boundary types. The
menu is divided into 3 parts:

1. Patch Type: Specify the active boundary condition.

2. Visibility

(a) Regions Visibility: Toggle On/Off the display of boundary conditions on the
model.

(b) Delete All Regions: Complete remove of all specified boundary conditions on the
model.

3. Selection

(a) Element Information: Allow the user to select a surface face to view its informa-
tion on the Cell Properties window.

(b) Individual Elements: Changes single surface face boundary condition to the active
boundary type.

(c) Vertical strip Elements: Changes one strip of vertical elements boundary condi-
tions to the active boundary type.

(d) Horizontal strip Elements: Changes one strip of horizontal elements boundary
conditions to the active boundary type.

99

Figure 7.27: Boundaries Menu

7.2.8 Post-Gridding Menu

These operations can be done on the 3D Grid.

Cells Level Number of cells to be removed.

Remove Cell Removes a cell from the hexahedral grid appearing on the viewport.

Surface Plane Set the drawing plane to the surface selected.

Figure 7.28: Post Gridding Menu

7.3 CASE STUDIES

7.3.1 Simple Cases

7.3.1.1 Rectangular Duct with Baffle and 90◦ Bend

The Program was used to generate a straight duct grid Fig. (7.32). Following steps have
been executed to reach this result:

1. Home Menu -> Rectangle (Cross Section of the duct) Fig. (7.29a).

2. Task Bar -> Check Edges.

3. 2D Gridding -> Select the four corners of the rectangle in counter clockwise or clockwise
order.

4. Grid Generated (default N x M = 10 x 10) Fig. (7.29b).

5. In Properties Window -> Select MFactor = 1.4 and NFactor = 1.4 with Double Stretch-
ing over M and N. Fig.(7.29c).

6. Menu Bar -> Extrusion -> Length = 80, Segments = 30 -> Solid Extrude. Fig.(7.30a)

100

7. Menu Bar -> Home -> Line Segment -> Draw line parallel to the x-axis. Fig.(7.30b).

8. Menu Bar -> Revolving -> Solid Revolve around axis = SpaceLine1 with angle = 90◦

and 30 Segments.Fig.(7.30b).

9. Menu Bar -> Extrusion -> Extrude for 80 in z-direction with 30 Segments.

10. Menu Bar -> Post-Gridding -> Remove Cell Depth = 4 Width of cells removed as
shown in Fig. (7.32).

(a) Duct Cross Section (b) Gridded Duct Section

(c) Contracted Duct Grid

Figure 7.29: Empty and Gridded Domain

(a) First Extrude (b) Rotation Around SpaceLine1

Figure 7.30: Bending Duct Operations

101

Figure 7.31: Second Extrusion Operation

Figure 7.32: Duct Baffle

The inlet and outlet boundaries are defined as follows:

11. Rotate the duct such that both inlet and outlet planes become in view.

12. Menu Bar -> Boundaries -> Whole Visible Faces -> Inlet -> Move the pointer to the
inlet face and press left button. Fig. (7.33a).

13. Menu Bar -> Boundaries -> Whole Visible Faces -> Exit -> Move the pointer to the
outlet face and press left button. Fig. (7.33b).

102

(a) Selection of Inlet Boundary (b) Selection of Outlet
Bonudary

Figure 7.33: Duct Boundaries Definition

7.3.1.2 Straight Pipe I

1. Menu Bar -> Home -> Circle (Draw circle with required diameter and centre of pipe).
Fig. (7.34a).

2. Menu Bar -> Home -> Rectangle (Draw square centred with pipe cross-section). Fig.
(7.34b).

3. Menu Bar -> Home -> Line Segment (Divide the pipe cross-section into the shown
sub-domains). Fig. (7.34b).

4. Menu Bar -> 2D Gridding -> 4 Point Cell Greator -> Edges from the Task Bar ->
(Highlight the corners points of each sub-doman in a C-W manner)

5. Grids are created with the default M x N (10 x 10). This can be changed together
with the contraction or the expansion factors in the Properties Window. Fig. (7.35).

6. Menu Bar -> Extrusion -> Solid Extrude with the required length and number of
segments. Fig. (7.36). (Extrusion can be effected with either expansion expansion or
contraction function selected from the Stretching field).

103

(a) Pipe Cross-Section (b) Pipe Cross-Section Sub-
domains

Figure 7.34: Straight Pipe Sketch Initial Steps

(a) Gridding Sub-Domains
with 10x10 cells

(b) Wall Increased Cells Den-
sity by Applying Stretching

Figure 7.35: Pipe Gridded Cross-Section

Figure 7.36: Straight Pipe from Basic Extrusion

104

Bending with 90◦

1. Click on the pipe model by mouse.

2. Menu Bar -> Viewport -> Solid Model Plane (The drawing plane should now be on
the top of the pipe model)

3. Menu Bar -> Home -> Line Segment (Draw line segment that will serve as a rotation
axis)

4. Menu Bar -> Revolving -> Line Axes -> Select Last Space Line from the list.

(a) Modify Angle field = 90<deg>
(b) Modify Segments
(c) Click the Pipe Model
(d) Click Solid Revolve Button

5. Model is revolved around the selected space line.

6. Menu Bar -> Extrusion -> Solid Extrude. Fig. (7.37).

Figure 7.37: Straight Pipe with 90◦ Bending

7.3.1.3 Straight Pipe II

Figure 7.38: Schematic of an Axisymmetric Pipe

105

In addition to the possibility of generating grid covering a straight pipe by extruding a circle
representing its cross section, another option is to revolve around the x-axis a rectangle with
the pipe radius as its height and the pipe length as its width as shown in Fig. (7.38). The
following steps illustrate the sequence of operations needed for creating the axisymmetric
grid:

1. Menu Bar -> Home -> Rectangle (draw a rectangle that its bottom line lie completely
on the x-axis)

2. Menu Bar -> 2D Gridding -> 4 Point Cell Creator with Edge snapping activated ->
Highlight corners and click them in clock-wise manner.

3. Properties Window -> MFactor is modified as shown in Fig. (7.39).

4. Menu Bar -> Revolving -> Axisymmetric Rotation About x-axis. Fig. (7.40).

5. Three kinds of boundaries need to be declared; Inlet, Exit, and Symmetry Planes, in
addition to the pipe walls.

6. Menu Bar -> Boundaries -> Inlet -> Whole Visible Faces -> Select the Inlet plane by
clicking the mouse left button. Fig. (7.41a).

7. Menu Bar -> Boundaries -> Exit -> Whole Visible Faces -> Select the Outlet plane
by clicking the mouse left button.Fig. (7.41a).

8. Menu Bar -> Boundaries -> Symmetric Plane -> Whole Visible Faces -> Select the
First Symmetry plane. Fig. (7.41b).

9. Menu Bar -> Boundaries -> Symmetric Plane -> Whole Visible Faces -> Select the
Second Symmetry plane. Fig. (7.41c).

Figure 7.39: Axisymmetric Pipe Cross-Section

106

Figure 7.40: Axisymmetric Straight Pipe Grid

(a) Inlet and Outlet Boundaries

(b) Symmetry Plane 1 (c) Symmetry Plane 2

Figure 7.41: Definition of Boundary Conditions

7.3.1.4 S Shape Pipe

1. Starting from a cross-section Fig. (7.35).

2. Menu Bar -> Extrusion -> Solid Extrude.

3. Menu Bar -> Viewport -> Solid Model Plane (Moves the drawing plane to the top of
the solid model)

4. Menu Bar -> Line Segment (Draw a line to be used as an axis line) Fig. (7.42a).

107

5. Menu Bar -> Revolving -> Solid Revolve with Line Axis = SpaceLine1, Angle = 45◦.
Fig. (7.42b).

6. Menu Bar -> Extrude -> Solid Extrude

7. Menu Bar -> Viewport -> Solid Model Plane (The plane moves to the top location)

8. Menu Bar -> Line Segment (Draw SpaceLine2 second rotation axis)

9. Menu Bar -> Revolving -> Solid Revolve. Fig. (7.42c).

10. Menu Bar -> Extrude -> Solid Extrude. Fig. (7.42d).

(a) Space Line Axis (b) First Revolve Operation

(c) Second Revolve Operation (d) Final Mesh

Figure 7.42: S Shape Pipe Grid Modeling Operations

108

7.3.2 Composite Cases

7.3.2.1 Axisymmetric Sudden Expansion-Contraction

Following steps were carried out to reach a complete axisymmetric sudden expansion-contraction.
Fig. (7.46a).

1. Menu Bar -> Home -> Line Strip (Draw Cross-Section that its lower side completey
lie on the x-axis). Fig. (7.43)

2. Menu Bar -> Home -> Line Segment (Specify sub-domains region). Fig. (7.44).

3. Menu Bar -> 2D Gridding -> 4 Point Cell Creator (Highlight sub-domains corners in
C-W to create target grid). Fig. (7.45).

4. Menu Bar -> Revolve -> Axisymmetric Rotation About x-axis (to finish the creation
3D axisymmetric grid). Fig. (7.46a).

Figure 7.43: Sudden Expansion / Contraction Cross-Section

Figure 7.44: Sudden Expansion Contraction Sub-domains

Figure 7.45: Sudden Expansion Contraction Gridded

109

(a) Grid Front View (b) Grid Rear View

Figure 7.46: Expansion Contraction Grid

(a) Inlet and Outlet Boundaries

(b) Symmetry Plane 1 (c) Symmetry Plane 2

Figure 7.47: Definition of Bonudary Conditions

7.3.2.2 Bank of Tubes

(a) Tube Arrangement (b) Sub-domains

Figure 7.48: Bank of Tubes

110

Figure 7.49: Gridded Bank of Tubes

Figure 7.50: Extruded Bank of Tubes

111

7.3.2.3 Hydro Cyclone

Figure 7.51: Hydro Cyclone Schematic Diagram[61]

Sketching and Gridding

1. We begin the drawing of hydro cyclone with 2D sketching as shown in Fig. (7.52a).

(a) Menu Bar -> Home -> Circle (Draw circle with dk = 85)

(b) Draw inner circle with the ratio dp/D

(c) Draw another inner circle with less diameter to form an inner tube cross section
as shown in Fig. (7.52a).

2. Inner Circle -> Right Click -> Make Grid ... -> Four Cores with 8 Exterior Points ->
Press Ok (Circle is automatically gridded with 8 snapping points on its exterior)

3. Menu Bar -> Home -> Line Segment -> Edges, Nearest, and Grid from the Task Bar
-> (For each snapping point on the gridded circle draw a line segment to the outer
circle) Fig. (7.52b).

4. Menu Bar -> 2D Gridding -> 4 Point Cell Creator -> Edges from Task Bar -> (High-
light the corners points of each sub-doman in a C-W manner)

5. Grids are created with the default M x N (10 x 10). Fig. (7.53).

112

(a) Cyclone Sketch

(b) Gridded Inner Circle with sub-domains

Figure 7.52: Cyclone Sketching and Sub-Domains

3D Operations After the complete gridding of the cyclone cross-section, following steps
are required to generate the 3D mesh of the Cyclone:

1. Double click the flap to unselect it from the sub-domains that are going to be extruded.

2. Menu Bar -> Extrusion -> Solid Extrude with Length = 520, Scaling = 2.35, and
Segments = 10. Fig. (7.54).

3. Menu Bar -> Extrusion -> Solid Extrude with Length = 84. Fig. (7.55).

4. Double click sub-domains of the inner tube.

5. Menu Bar -> Extrusion -> Solid Extrude with Length = 88. Fig. (7.56).

6. Double click the flap to select it for next process

113

7. Menu Bar -> Extrusion -> Solid Extrude with Length = 90. Fig. (7.57).

8. Unselect all other sub-domains excluding ones inside the inner tube.

9. Menu Bar -> Extrusion -> Solid Extrude with Length = 50 Fig. (7.58)

Figure 7.53: Cyclone Cross-Section Completely gridded

Figure 7.54: Cyclone First Extrusion Process

114

Figure 7.55: Cyclone Second Extrusion Process

Figure 7.56: Cyclone Third Extrusion Process

115

Figure 7.57: Cyclone Fourth Extrusion Process

Figure 7.58: Cyclone Fifth Extrusion Process

Cyclone Lower Part

1. Draw Circle at the base of the cyclone.

(a) Activate Grid, and Nearest Snapping Options.

2. Line Segments -> Draw Line from highlighted node on the cyclone grid on bottom to
the nearest point on the circle

116

3. Repeat last process 3 times to complete the sub-domains. Fig. (7.59)

4. Menu Bar -> 2D Gridding -> 4 Point Cell Creator -> Highligh points with Edges Snap
Option activated. Fig. (7.60).

5. Right Click Bottom Circle -> Invert Normal (Extrusion takes place along the normal).

6. Menu Bar -> Extrusion -> Solid Extrude with Length = 100 Fig. (7.61)

Figure 7.59: Cyclone Lower Part Sub-domains

Figure 7.60: Cyclone Lower Part Gridded

117

Figure 7.61: Cyclone Lower Part First Extrusion

Figure 7.62: Final Hydro Cyclone Mesh

118

7.3.2.4 Internal Combusion Engine Poppet Valve

A poppet valve is a valve typically used to control the timing and quantity of gas or vapour
flow into an engine. It consists of a hole, usually round or oval, and a tapered plug, usually a
disk shape on the end of a shaft also called a valve stem. The portion of the hole where the
plug meets with it is referred as the ’seat’ or ’valve seat’. The shaft guides the plug portion
by sliding through a valve guide. In exhaust applications a pressure differential helps to seal
the valve and in intake valves a pressure differential helps open it.

It is required to grid the space around the poppet valve for the sake of CFD analysis.
The process includes two parts, first one is the modeling of the poppet valve space itself.
Second one is the modeling of the upper space connected to the valve that take or intake
gases.

(a) Valve Cross-
Section

(b) Geometry Sub-
domains

(c) Valve Grid-
ding

Figure 7.63: Poppet Valve Profile and Sub-domains

(a) (b)

Figure 7.64: Poppet Valve Grid

Poppet Valve Mesh Generation

1. Home Menu -> Line Strip (Draw the cross section to the left of the y-axis). Fig.
(7.63a).

119

2. Home Menu -> Line Segment (Divide the area into sub-domains). Fig. (7.63b).

3. 2D Gridding Menu -> 4 Point Cell Creator (Build the grid by selecting sub-domains
corners in clockwise manner). Fig. (7.63c).

4. Revolving Menu -> Solid Revolve with Angle = 360◦, Line Axis = Y-Axis. Fig. (7.64).

Upper Part Gridding

1. Menu Bar -> Post-Gridding -> Surface Plane (Click on any cell surface at the top of
the model).

2. Menu Bar -> Home -> Circle (Draw Circle on the plane).

3. Menu Bar -> Home -> Line Segment (Draw 3 Line with Grid and Nearest Snapping
Activated). Fig. (7.65).

4. Menu Bar -> Home -> Bezier Curves (Draw curve coming out from the circle). Fig.
(7.65).

5. Menu Bar -> 2D Gridding -> 4 Point Cell Creator (Building the grid by highlighting
Edges Snapping points). Fig. (7.66).

6. Menu Bar -> Extrusion -> Solid Extrude. Fig. (7.67).

Figure 7.65: Poppet Upper Sketch with sub-domains

120

Figure 7.66: Poppet Upper Part Gridded

Figure 7.67: Poppet Valve 3D Mesh

121

Figure 7.68: Poppet Valve Grid Cross Section

7.3.2.5 Composite Valve

The valve has 3 operations modes in which allow three different routes of the fluid flow:

Middle Valve seat positioned in the middle between the axial plug and annulus plug. Fig.
(7.69).

Left Axial plug completely close the valve with the valve seat. Fig. (7.70).

Right Annulus plug completely close the valve with the valve seat. Fig. (7.71).

Figure 7.69: Isometric Valve Seat at Middle

122

Figs. (7.72 - 7.74) Shows the cross section of the valve at the three operations mode.
These drawings are the starting point of the gridding operation.

The steps of building the mesh can summarized as follows:

1. Menu Bar -> Home Menu -> Line Segments (Draw Lines with Edges and Nearest snap
options activated). Figs. (7.75, 7.78, 7.82).

2. Menu Bar -> 2D Gridding -> 4 Point Cell Creator -> Edges from the Task Bar ->
(Highlight the corners points of each sub-doman in a C-W manner).

3. Generated Grids Stretching factors MFactor, and NFactor, should be modified in the
Properties Window. Figs. (7.76, 7.79, 7.83).

4. Menu Bar -> Revolving -> Axisymmetric Rotation About x-axis (Creating the final
3D Mesh of the valve). Figs. (7.77, 7.80, 7.84).

Figure 7.70: Isometric Valve Closed by Axial Plug

Figure 7.71: Isometric Valve Closed by Annulus Plug

123

Valve Cross Sections

Figure 7.72: Valve Seat at Middle Cross-Section

Figure 7.73: Valve Closed by Axial Plug Cross-Section

Figure 7.74: Valve Closed by Annulus Plug Cross Section

Valve at Mid-Way

Figure 7.75: Middle Valve Seat Sub-domains

124

Figure 7.76: Middle Valve Seat Gridded

Figure 7.77: Middle Valve Seat Axysimmetric Revolve

Valve Half-Closed by Axial Plug

Figure 7.78: Valve Left Axial Plug Sub-domains

Figure 7.79: Valve Left Axial Plug Gridded

125

Figure 7.80: Valve Left Axial Plug Axysimmetric Revolve

Figure 7.81: Valve Left Axial Plug Close View

Valve Half-Closed by Annulus Plug

Figure 7.82: Valve Right Annulus Plug Sub-domains

126

Figure 7.83: Valve Right Annulus Plug Gridded

Figure 7.84: Valve Right Annulus Plug Axysimmetric Revolve

Figure 7.85: Valve Right Annulus Plug Close View

127

7.3.2.6 Pump rotor

Fig. (7.86) shows the pump rotor cross section to be gridded.

1. Menu Bar -> 2D Gridding -> Activate Edges Snapping Option -> Highlight four edges
C-W for each subdomain. Fig. (7.88).

2. Menu Bar -> Viewport -> x-z (Drawing plane transforms to the new location)

3. Menu Bar -> Home -> Hybrid Line -> Draw first line by placing two points, then
Press SPACE (Bezier Mode), draw bezier curve, finally straight line. Fig. (7.89).

4. Menu Bar -> Extrusion -> Profile Extrusion Sub Menu -> Solid Extrude with Curves
= HybridLineCurveStrip1, and [Treat as Radial Mesh] enabled. Fig.(7.90).

Figure 7.86: Pump Rotor Sketch

Figure 7.87: Pump Rotor Sub-domains

128

Figure 7.88: Pump Rotor Grid

Figure 7.89: Extrude Line Profile

129

Figure 7.90: Pump Rotor Profile Extrusion

130

7.4 EXPORTING GRID FILE

The exported file of the generated grid usually includes four elements:

1. Grid Nodes (Cell Vertices).

2. Cell Faces.

3. Grid Cells.

4. Boundary Faces and Boundary Types.

The format of the exported file depends entirely on the format of the target package. In this
respect, the developed program has three formats compatible with Paraview® for plotting
purposes as well as Star-CD®, OpenFOAM®, and Fluent® preprocessors and solver packages.

Access to the export menu is available through the workspace panel from the Export
Functions command Fig. (7.8). Figure (7.91) shows the folder structure for an OpenFOAM
case. The Generated or Exported Grid Information section contains separate files for grid
nodes (points), cells, faces, and boundaries. For details on the format of the various files
dealing with the grid information, the reader may refer to [62].

Figure 7.91: OpenFOAM Case Structure[62]

131

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS

From the work presented throughout the thesis, and in conjuction with objective detailed in
chapter I, the following conclusions may be drawn:

1. Software Package has been developed and successfully used to generate quadrilateral
and hexahedral grids for CFD applications in flow domains of varying complexities.

2. The program relies on visual interaction with the user and a sophisticated graphics
library and menu driven commands to create the desired grid.

3. The approach adopted for generating the grid relies on the block structured concept
where the domain is divided into a number of sub-domains contained within four
curves each. When the user selects the four intersection points of the sub-domain
curves, a structured grid appears in that sub-domain or block and connects itself with
the neighbouring block grids if existed.

4. Case studies with variable degrees of geometrical complexity were carried out using
the developed package. The sequence of grid generation operations demonstrated the
package attributes intended at the design stage namely agility, flexibility, powerful
control, and ease of use.

8.2 RECOMMENDATIONS FOR FUTURE WORK

1. Implementation of the coordinate transformation of surfaces that enables the calcula-
tions of geometric properties of the grid sub-domains using metric tensor and associ-
ated curvilinear operators. This is expected to enhance the speed and accuracy of grid
generation especially when handling sizeable grids.

2. Employing the hyperbolic grid generation techniques to enhance smoothness of the
grid especially at the boundaries of structured sub-domains.

3. Extension of the program to intersecting three-dimensional bodies (e.g. two intersect-
ing cylinders).

133

4. Extending the package ability to export the grid data to files compatible with more
CFD packages formats.

5. Writing extensive manual for the software package.

134

LIST OF REFERENCES

[1] M. Peric. A Finite Volume Method for The Prediction of Three-Dimensional Fluid Flow
in Complex Ducts. PhD thesis. PhD thesis, University of London, 1985.

[2] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics.
Harlow, 1995.

[3] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge: Cambridge
University Press, 2002.

[4] Tim Tilford. Computational fluid dynamics. http://ammsc.gre.ac.uk/coursinf/
cfd_exp.html, 2013.

[5] Hadi Mohammadi. Flow structure around the bileaflet heart valve prostheses. http:
//www.hadi-mohammadi-ubc.com, 2009.

[6] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. New York: McGRAW-HILL,
1980.

[7] I. A. Demirdzic. A Finite Volume Method for Computation of Fluid Flow in Complex
Geometris. PhD thesis. PhD thesis, University of London, 1982.

[8] NASA NTRS. Cfd vision 2030 study: A path to revolutionary computational aero-
sciences. Technical report, NASA, 2014.

[9] W. R. Buell and B. A. Bush. Mesh generation - a survey. ASME, 72-WA/DE-2:332–338,
1972.

[10] V. N. Kaliakin. A simple coordinate determination scheme for two-dimensional mesh
generation. Computers & Structures, 43(3):505–515, 1992.

[11] R. Haber, M. S. Shephard, J. F. Abel, R. H. Gallagher, and D. P. Greenberg. A gen-
eral two-dimensional, graphical finite element perprocessor utilizing discrete transfinite
mappings. International Journal for Numerical Methods in Engineering, 17:1015–1044,
1981.

[12] K. L. Lin and H. J. Shaw. Two-dimensional orhthogonal grid generation techniques.
Compouters & Structures, 41(4):569–583, 1991.

135

http://ammsc.gre.ac.uk/coursinf/cfd_exp.html
http://ammsc.gre.ac.uk/coursinf/cfd_exp.html
http://www.hadi-mohammadi-ubc.com
http://www.hadi-mohammadi-ubc.com

[13] M. Montgomery and S. Fleeter. A locally analytic technique applied to grid generation
by elliptic equations. International Journal for Numerical Methods in Engineering,
38:421–432, 1995.

[14] J. M. Tembulkar and B. W. Hanks. On generating quadrilateral elements from a trian-
gular mesh. Computer & Structures, 42(4):665–667, 1992.

[15] S. H. Lo. Generating quadrilateral elements on plane and over curved surfaces. Com-
puters & Structures, 31(3):421–426, 1989.

[16] J. A. Talbert and A. R. Parkinson. Development of an automatic, two-dimensional
finite element mesh generator using quadrilateral elements and bezier curve boundary
definition. International Journal for Numerical Methods in Engineering, 29:1551–1567,
1990.

[17] T. K. H. Tam and C. G. Armstrong. 2d finite element mesh generation by medial axis
subdivision. Advances in Engineering Software, 13(5/6):313–324, 1991.

[18] T. D. Blacker, M. B. Stephenson, J. L. Mitchiner, L. R. Phillips, and Y. T. Lin. Au-
tomated quadrilateral mesh generation: A knowledge system approach. ASME, 88-
WA/CIE-4:0, 1988.

[19] C. S. Krishnamoorth, B. Raphael, and S. Mukherjee. Meshing by successive superele-
ment decomposition (msd) - a new approach to quadrialteral mesh generation. Finite
Element in Analysis and Design, 20:1–37, 1995.

[20] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J. Wu. A new approach to the develop-
ment of automatic quadrilateral mesh generation. International Journal for Numerical
Methods in Engineering, 32:849–866, 1991.

[21] T. D. Blacker and M. B. Stephenson. Paving: A new approach to automated quadri-
lateral mesh generation. International Journal for Numerical Methods in Engineering,
32:811–847, 1991.

[22] T. D. Blacker, J. Jung, and W. R. Witkowski. An adaptive finite element technique
using element equilibrium and paving. ASME, 90-WA/CIE-2:0, 1990.

[23] T. D. Blacker, M. B. Stephenson, and S. Canann. Analysis automation with paving: A
new quadrilateral meshing technique. Advances in Engineering Software, 13(5/6):332–
337, 1991.

[24] T. D. Blacker and M. B. Stephenson. Paving: A new approach to automatic quadrilat-
eral mesh generation. Sandia National Laboratories, SAND-90-0249:0, 1990.

[25] V. D. Liseikin. Grid generation methods (2nd ed.). Dordrecht: Springer, 2010.

136

[26] P. Knupp and S. Steinberg. Fundmentals of Grid Generation. CRC Press, Boca Raton,
1994.

[27] M. Farrashkhalvat. and J. P. Miles. Basic structured grid generation with an introduction
to unstructured grid generation. Oxford: Butterworth Heinemann, 2003.

[28] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation -
Foundations and Applications. North-Holland, New York, 1985.

[29] Douglas Alan Schwer and Philip Buelow. Diagonalized upwind navier stokes code.
http://duns.sourceforge.net/tutorial3.html, 2013.

[30] LiU. Research at computational mathematics. http://www.liu.se/mai/bm/
forskning%3Fl=en, 2014.

[31] CST. Overset grid assembly process. http://celeritassimtech.com/%3Fpage_id=
113, 2011.

[32] Pointwise. Aerodynamic optimization with pointwise and
friendship-framework. http://blog.pointwise.com/2014/06/09/
aerodynamic-optimization-with-pointwise-and-friendship-framework/, 2014.

[33] W. M. Chan and J. L. Steger. Enhancements of a three-dimensional hyperbolic grid
generation scheme. Applied Mathematics and Computation, 51:181–205, 1992.

[34] Paul L. George. Automatic Mesh Generation - Application to Finite Element Methods.
Wiley, 1991.

[35] P. A. F. Martins and M. J. M. B. Marques. Model3 - a three-dimensional mesh generator.
Computers & Structures, 42(2):511–529, 1992.

[36] S. C. S. Antonio. On the Generation of Quadrilateral Element Meshes for General CAD
Surfaces. PhD thesis, Massachusetts Institute of Technology, 1996.

[37] William D. Henshaw. Automatic grid generation. Acta Numerica, 5:121–148, January
1996.

[38] P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A. Yerry. Robust,
geometrically based, automatic two-dimensional mesh generation. International Journal
for Numerical Methods in Engineering, 24:1043–1078, 1987.

[39] A. Tezuka. Adaptive process with quadrilateral finite elements. Advances in Engineering
Software, 15:185–201, 1992.

[40] F. Cheng, J. W. Jaromczyk, J. R. Lin, S. S. Chang, and J. Y. Lu. A parallel mesh
generation algorithm based on vertex label assignment scheme. International Journal
for Numerical Methods in Engineering, 28:1429–1448, 1989.

137

http://duns.sourceforge.net/tutorial3.html
http://www.liu.se/mai/bm/forskning%3Fl=en
http://www.liu.se/mai/bm/forskning%3Fl=en
http://celeritassimtech.com/%3Fpage_id=113
http://celeritassimtech.com/%3Fpage_id=113
http://blog.pointwise.com/2014/06/09/aerodynamic-optimization-with-pointwise-and-friendship-framework/
http://blog.pointwise.com/2014/06/09/aerodynamic-optimization-with-pointwise-and-friendship-framework/

[41] L. T. Souza and M. Gattass. A new scheme for mesh generation and mesh refinement
using graph theory. Computers & Structures, 46(6):1073–1084, 1993.

[42] G. Xie and J. A. H. Ramaekers. Graded mesh generation and transformation. Finite
Element in Analysis and Design, 17:41–55, 1993.

[43] B. P. Johnston, J. M. Sullivan Jr., and A. Kwasnik. Automatic conversion of triangular
finite element meshes to quadrilateral elements. International Journal for Numerical
Methods in Engineering, 31:67–84, 1991.

[44] E. Rank, M. Scheweingruber, and M. Sommer. Adaptive mesh generation and transfor-
mation of triangular to quadrilateral elements. Communications in Numerical Methods
in Engineering, 9:121–129, 1993.

[45] G. R. Liu. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press,
2003.

[46] G. R. Liu and Y. T. Gu. An Introduction to Meshfree Methods and Their Programming.
Springer, 2005.

[47] J. J. Monaghan and R. A. Gingold. Shock simulation by the particle method sph.
Journal of Computational Physics, 52:374–389, 1983.

[48] A. J. Katz. Meshless methods for computational fluid dynamics. Stanford University,
2009.

[49] A. J. Ferreira. Progress on meshless methods. Dordrecht: Springer, 2009.

[50] M. Griebel. Meshfree methods for partial differential equations. New York: Springer,
2010.

[51] J. K. Aaron. MESHLESS METHODS FOR COMPUTATIONAL FLUID DYNAMICS.
PhD thesis, STANFORD UNIVERSITY, 2009.

[52] D. B. Spalding and S. V. Patankar. Numerical prediction of flow, heat transfer, turbu-
lence, and combustion: selected works of Professor D. Brian Spalding. Oxford: Perga-
mon Press, 1983.

[53] C. Berge. Topological Spaces Including a Treatment of Multi-Valued Functions, Vector
Spaces and Convexity. New York: Dover, 1997.

[54] G. E. Bredon. Topology & Geometry. New York: Springer-Verlag, 1995.

[55] G. P. Collins. The shapes of space. Sci. Amer, 291:94–103, July 2004.

[56] Wikipedia. Homotopie. http://fr.wikipedia.org/wiki/Homotopie, 2009.

[57] Wikipedia. Bezier curve. http://en.wikipedia.org/wiki/B%C3%A9zier_curve, 2014.

138

http://fr.wikipedia.org/wiki/Homotopie
http://en.wikipedia.org/wiki/B%C3%A9zier_curve

[58] Aleksas Riskus. Approximation of a cubic bezier curve by circular arcs and vice versa.
INFORMATION TECHNOLOGY AND CONTROL, 35(4):1, 2006.

[59] D. Shreiner. OpenGL programming guide: the official guide to learning OpenGL, version
2.1 (6th ed.). NJ: Addison-Wesley, 2008.

[60] S. R. Buss. 3D computer graphics a mathematical introduction with OpenGL. Cam-
bridge: Cambridge University Press, 2003.

[61] J. Cernecky and K. Plandorova. The effect of the introduction of an exit tube on the
separation efficiency in a cyclone. Brazilian Journal of Chemical Engineering, 30:627–
641, July/Sept 2013.

[62] OpenFOAM. Openfoam. http://www.openfoam.com/, 2004.

139

http://www.openfoam.com/

APPENDIX A

REVIEW OF DIFFERENTIAL AND INTEGRAL
CALCULUS IN GENERAL CURVILINEAR

COORDINATES

A.1 INTRODUCTION

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the
coordinate lines may be curved. These coordinates may be derived from a set of Cartesian
coordinates by using a transformation that is locally invertible (a one-to-one map) at each
point. This means that one can convert a point given in a Cartesian coordinate system to its
curvilinear coordinates and back. The name curvilinear coordinates, coined by the French
mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear
systems are curved.

Figure A.1: Common Coordinate Systems.

Well-known examples of curvilinear systems are Cartesian, cylindrical and spherical polar
coordinates, for R3, where R is the 3D space of real numbers.

Note that all three systems are orthogonal because the associated base vectors are mu-
tually perpendicular. The cylindrical and spherical coordinate systems are inhomogeneous
because the base vectors vary with position. As indicated er , depends on θ for cylindrical
coordinates and er depends on both θ and Φ for spherical coordinates.

141

Figure A.2: Homogeneous coordinates.

A coordinate system is called “homogeneous” if the associated base vectors are the same
throughout space. A basis is “orthogonal” (or “rectangular”) if the base vectors are every-
where mutually perpendicular. Most authors use the term “Cartesian coordinates” to refer
to the conventional orthonormal homogeneous right-handed system of Fig. (A.2). As seen
in Fig. (A.3), a homogeneous system is not required to be orthogonal. Furthermore, no
coordinate system is required to have unit base vectors. The opposite of homogeneous is
“curvilinear,” and Fig. (A.3) below shows that a coordinate system can be both curvilin-
ear and orthogonal. In short, the properties of being “orthogonal” or “homogeneous” are
independent (one does not imply or exclude the other).

Figure A.3: Orthogonal and Non-Orthogonal Curvilinear Coordinates.

A.2 CURVILINEAR COORDINATES

The coordinate grid is the family of lines along which only one coordinate varies. If the grid
has at least some curved lines, the coordinate system is called “curvilinear,” and, as shown
in Fig. (A.3), the associated base vectors (tangent to the grid lines) necessarily change
with position, so curvilinear systems are always inhomogeneous. The system in Fig. (A.3)a
has base vectors that are everywhere orthogonal, so it is simultaneously curvilinear and
orthogonal. Note from Fig. (A.1) that conventional cylindrical and spherical coordinates
are both orthogonal and curvilinear. Incidentally, no matter what type of coordinate system
is used, base vectors need not be of unit length; they only need to point in the direction that

142

the position vector would move when changing the associated coordinate, holding others
constant. We will call a basis “regular” if it consists of a right-handed orthonormal triad.
The systems in Fig. (A.3) have irregular associated base vectors. The system in Fig. (A.3)
can be “regularized” by normalizing the base vectors. Cylindrical and spherical systems are
examples of regularized curvilinear systems.

A.2.1 Base Vectors

Figure A.4: Covariant base vectors at point P in three dimensions.[27]

The position vector r of a point P in space with respect to some origin O may be
expressed as

r = y1i1 + y2i2 + y3i3 (1.1)

where {i1, i2, i3}, alternatively written as {i, j,k}, are unit vectors in the direction of
the rectangular cartesian axes. Assuming an invertible relationship between set of cartesian
coordinates and set of curvilinear coordinates, i.e.

yi = yi
(
x1, x2, x3

)
, i = 1, 2, 3. (1.2)

with the inverse relationship

xi = xi (y1, y2, y3) , i = 1, 2, 3. (1.3)

143

A.2.1.1 Transformation Equation

We will refer to any curvilinear coordinates with xi that represent ρ, θ, z in cylindrical or ρ,
θ, φ in spherical

where i = 1,2,3.
Cylindrical Equation Transformation
Representing Cylindrical From Cartesian Coordinates

r = r(x, y, z) er + θ(x, y, z) eθ + z ez (1.4)

r =
√
x2 + y2 er + tan−1

(
y

x

)
eθ + z ez (1.5)

Then the inverse is

r = x (r, θ, z) i + y (r, θ, z) j + z (r, θ, z) k (1.6)

r = r cos (θ) i + r sin (θ) j + z k (1.7)

A.2.1.2 Covariant Base Vectors

Covariant Base Vectors can be obtained from the transformation from Curvilinear to Carte-
sian Coordinates.

ei = ∂r
∂xi

(1.8)

ei = ∂y1

∂xj
+ ∂y2

∂xj
+ ∂y3

∂xj
(1.9)

(ei)j = ∂yj
∂xi

(1.10)

Where yi components of cartesian transformation vector

144

A.2.1.3 Contravariant Base Vectors

Contravariant Base Vectors can be obtained from the transformation from Cartesian to
Curvilinear Coordinates.

ei = ∂xi

∂r
(1.11)

ei = ∂xi

∂y1
+ ∂xi

∂y2
+ ∂xi

∂y3
(1.12)

(ei)j = ∂xi

∂yj
(1.13)

A.2.1.4 Jacobian Matrix

the Jacobian J can be computed by taking the determinant of the Cartesian transformation
tensor or by simply taking the triple scalar product of the covariant base vectors, whichever
method is more convenient.

J = e1 · (e2 × e3) (1.14)

A.2.1.5 Gradient Operator in General Curvilinear Coordinates

∇ = ik
∂

∂yk
= i1

∂

∂y1
+ i2

∂

∂y2
+ i3

∂

∂y3
(1.15)

∇xi = ik
∂xi

∂yk
= ii

∂xi

∂y1
+ i2

∂xi

∂y2
+ i3

∂xi

∂y3
= ei (1.16)

Gradient for any scalar value

∇ϕ = ik
∂ϕ

∂yk
(1.17)

multiply this by components of curvilinear components ∂xj

∂xj

∇ϕ = ik
∂ϕ

∂xj
∂xj

∂yk
= ej

∂ϕ

∂xj
(1.18)

145

A.2.1.6 Representaion of Vector Components

Because of curvilinear coordinates and dual basis behavior we are able to describe the vector
r with reference to these base vectors.

r = r1e1 + r2e2 + r3e3 = riri (1.19)

r = r1e1 + r2e2 + r3e3 = riei (1.20)

r = riei = riei (1.21)

Which means Contravriant Components of vector is represented based on Covariant Base
Vectors and vice versa.

Later in this chapter see A.2.3 this formation of the equation will be very important
when getting chrstoffel symbols.

A.2.2 Metric Tensor

Covariant Metric Tensor

gij = ei · ej (1.22)

When the space is Euclidean, the base vectors can be expressed as linear combinations
of the underlying orthonormal laboratory basis and the above set of dot products can be
computed using the ordinary orthonormal basis formulas.1

gij = ∂yk
∂xi

∂yk
∂xj

(1.23)

gij =

e11 e12 e13

e21 e22 e23

e31 e32 e33

 (1.24)

1Note: If the space is not Euclidean, then an orthonormal basis does not exist, and the metric coefficients
gij must be specified a priori. Such a space is called Riemannian. Shell and membrane theory deals with
2D curved Riemannian manifolds embedded in 3D space. The geometry of general relativity is that of a
four-dimensional Riemannian manifold.

146

Contravariant Metric Tensor

gij = ei · ej (1.25)

it is important to

ei · ej = δij =

1 0 0
0 1 0
0 0 1

 (1.26)

Geometrically, 1.24 requires that the first contravariant base vector e1 must be perpendic-
ular to both e2 and e3, so it must be of the form e1 = α (e2 × e3). The as-yet undetermined
scalar α is determined by requiring that e1 · e1 equal unity.

e1 · e1 = [α (e2 × e3) · e1] = αe1 · (e2 × e3) = αJ = 1 (1.27)

In the second-to-last step, we recognized the triple scalar product, , to be the Jacobian
defined in 1.14. In the last step we asserted that the result must equal unity. Consequently,
the scalar is merely the reciprocal of the Jacobian:

α = 1
J

(1.28)

All three contravariant base vectors can be determined similarly to eventually give the
final result:

e1 = 1
J

(e2 × e3) , e2 = 1
J

(e3 × e1) , e3 = 1
J

(e1 × e2) (1.29)

A.2.2.1 Transformation with Metric Tensors

ri = r · ei = gijrj (1.30)

ri = r · ei = gijr
j (1.31)

Metric Tensor can convert the covariant base vector into contravariant base vector and

147

vice versa as in following equation

ei = gijej (1.32)

ei = gijej (1.33)

also convert covariant vector component into contravariant vector component

ri = gijr
j (1.34)

ri = gijrj (1.35)

A.2.3 Christoffel Symbols

Differentiating the base vectore for the second time give us:

∂ei
∂xj

= ∂e1

∂xj
i + ∂e2

∂xj
j + ∂e3

∂xj
k (1.36)

∂ei
∂xj

= Γ1
ij e1 + Γ2

ij e2 + Γ3
ij e3 (1.37)

∂ei
∂xj

= Γkij ek (1.38)

we can transfer the gk to the other side with dot product and raising the index

∂ei
∂xj
· ek = Γkij (1.39)

some properties
indexing order in second derivative is “I don’t know”

∂ei
∂xj

= ∂2r
∂xj∂xi

= ∂2r
∂xi∂xj

= ∂ej
∂xi

(1.40)

148

Γkij = Γkji (1.41)

its the same as gij = gji

lets take metric tensor and differentiate it again

∂gij
∂xk

= ∂ei
∂xk
· ej + ei ·

∂ej
∂xk

(1.42)

∂gij
∂xk

= Γlik el · ej + ei · Γljkel (1.43)

however el · ej and ei · el are metric tensors and equal to each other

∂gij
∂xk

= Γlik glj + Γljkgil (1.44)

and this is an important equation because indices can be shuffled CCW

∂gjk
∂xi

= Γlji glk + Γlkigjl (1.45)

∂gki
∂xj

= Γlkj gli + Γlijgkl (1.46)

Applying this formula make this 1.45+1.46-1.44 give us:

∂gjk
∂xi

+ ∂gki
∂xj
− ∂gij
∂xk

= 2Γlijgkl (1.47)

Rest of items removes each other

Γlijgkl = 1
2

[
∂gjk
∂xi

+ ∂gki
∂xj
− ∂gij
∂xk

]
(1.48)

knowing that Kroneker Delta can be obtained from multiplying contravariant and covari-
ant metric tensor

gklg
mk = δml (1.49)

149

Then Christoffel Symbols becomes

Γlijgklgmk = 1
2g

mk

[
∂gjk
∂xi

+ ∂gki
∂xj
− ∂gij
∂xk

]
(1.50)

Γlijδml = Γlij = 1
2g

mk

[
∂gjk
∂xi

+ ∂gki
∂xj
− ∂gij
∂xk

]
(1.51)

A.2.3.1 Second Kind Christoffel Symbols

[ij, k] = ∂ei
∂xj
· ek (1.52)

Γkij = ∂ei
∂xj
· ek (1.53)

Γkij = ∂ei
∂xj
·
(
gklel

)
= gkl [ij, l] (1.54)

[ij, l] = gklΓlij (1.55)

[ij, l] = 1
2

[
∂gjk
∂xi

+ ∂gki
∂xj
− ∂gij
∂xk

]
(1.56)

A.2.3.2 Covariant Derivative

∂r
∂xj

= ∂

∂xj

(
riei

)
= ∂ri

∂xj
ei + ri

∂ei
∂xj

(1.57)

∂r
∂xj

= ∂ri

∂xj
ei + riΓkijek (1.58)

notice that we made index shuffle in christoffel part

∂r
∂xj

=
(
∂ri

∂xj
+ Γikjrk

)
ei (1.59)

150

Covariant derivative of contravariant vector ri

∂r
∂xj

= ri, jei (1.60)

where

ri, j = ∂ri

∂xj
+ Γikjrk (1.61)

Covariant derivative of covariant vector ri

∂r
∂xj

= ri, jei (1.62)

where

ri, j = ∂ri

∂xj
− Γkijrk (1.63)

A.2.4 Div, Gradient, and Curl

∇ · r = ej · ∂r
∂xj

(1.64)

∇ · r = ∂rj

∂xj
+ Γjjkrk (1.65)

∇ · r = ∂rj

∂xj
+ 1
√
g

∂

∂xj
(√g) rj (1.66)

∇ · r = 1
√
g

∂

∂xj

(√
grj

)
(1.67)

lets introduce other form

∆
∆xj (· · ·) ≡ 1

√
g

∂

∂xj
[√g (· · ·)] (1.68)

∆
∆x(j) (· · ·) ≡

√
gjj
g

∂

∂x(j)

[√
g

gjj
(· · ·)

]
(1.69)

151

A.3 ORTHOGONAL CURVILINEAR COORDINATES

Orthogonal coordinates never have off-diagonal terms in their metric tensor. In other words,
the infinitesimal squared distance ds2 can always be written as a scaled sum of the squared
infinitesimal coordinate displacements

ds2 =
d∑

k=1

(
hk dq

k
)2

(1.70)

where d is the dimension and the scaling functions (or scale factors)

hk(q) def=
√
gkk(q) = |ek| (1.71)

equal the square roots of the diagonal components of the metric tensor, or the lengths of
the local basis vectors ek described below. These scaling functions hi are used to calculate
differential operators in the new coordinates, e.g., the gradient, the Laplacian, the divergence
and the curl.

A.3.1 Covariant Basis

In Cartesian coordinates, the basis vectors are fixed (constant). In the more general setting
of curvilinear coordinates, a point in space is specified by the coordinates, and at every
such point there is bound a set of basis vectors, which generally are not constant: this is
the essence of curvilinear coordinates in general and is a very important concept. What
distinguishes orthogonal coordinates is that, though the basis vectors vary, they are always
orthogonal with respect to each other. In other words ei · ej = 0 if i 6= j.

Figure A.5: Orthogonal Coordinates

These basis vectors are by definition the tangent vectors of the curves obtained by varying

152

one coordinate, keeping the others fixed:

ei = ∂r
∂qi

(1.72)

where r is some point and qi is the coordinate for which the basis vector is extracted. In
other words, a curve is obtained by fixing all but one coordinate; the unfixed coordinate is
varied as in a parametric curve, and the derivative of the curve with respect to the parameter
(the varying coordinate) is the basis vector for that coordinate.

The vectors are not necessarily of equal length. The normalized basis vectors are notated
with a hat and obtained by dividing by the length:

êi = ei
|ei|

(1.73)

A vector field may be specified by its components with respect to the basis vectors or
the normalized basis vectors, one must be sure which case is dealt. Components in the
normalized basis are most common in applications for clarity of the quantities (for example,
one may want to deal with tangential velocity instead of tangential velocity times a scale
factor); in derivations the normalized basis is less common since it is more complicated.

The useful functions known as scale factors (sometimes called Lamé coefficients, this
should be avoided since some more well known coefficients in linear elasticity carry the same
name) of the coordinates are simply the lengths of the basis vectors.

A.3.2 Contravariant Basis

The basis vectors shown above are covariant basis vectors (because they "co-vary" with
vectors). In the case of orthogonal coordinates, the contravariant basis vectors are easy to
find since they will be in the same direction as the covariant vectors but reciprocal length
(for this reason, the two sets of basis vectors are said to be reciprocal with respect to each
other):

ei = êi
hi

= ei
h2
i

(1.74)

this follows from the fact that, by definition, ei ·ej = δji , using the Kronecker delta. Note
that:

êi = ei
hi

= hiei = êi (1.75)

To avoid confusion, the components of the vector x with respect to the ei basis are

153

represented as xi, while the components with respect to the ei basis are represented as xi:

x =
∑

xiei =
∑

xiei (1.76)

The position of the indices represent how the components are calculated (upper indices
should not be confused with exponentiation). The components are related simply by:

h2
ix

i = xi (1.77)

A.3.3 Dot Product

The dot product in Cartesian coordinates (Euclidean space with an orthonormal basis set) is
simply the sum of the products of components. In orthogonal coordinates, the dot product
of two vectors x and y takes this familiar form when the components of the vectors are
calculated in the normalized basis:

x · y =
∑

xiêi ·
∑

yiêi =
∑

xiyi (1.78)

This is an immediate consequence of the fact that the normalized basis at some point
can form a Cartesian coordinate system: the basis set is orthonormal.

For components in the covariant or contraviant bases,

x · y =
∑

h2
ix

iyi =
∑ xiyi

h2
i

=
∑

xiyi =
∑

xiy
i (1.79)

This can be readily derived by writing out the vectors in component form, normalizing
the basis vectors, and taking the dot product. For example, in 2D:

x · y =
(
x1e1 + x2e2

)
·
(
y1e1 + y2e2

)

=
(
x1h1ê1 + x2h2ê2

)
·
(
y1

ê1

h1
+ y2

ê2

h2

)
= x1y1 + x2y2 (1.80)

where the fact that the normalized covariant and contravariant bases are equal has been
used.

154

A.3.4 Cross Product

The cross product in 3D Cartesian coordinates is:

x× y = (x2y3 − x3y2)ê1 + (x3y1 − x1y3)ê2 + (x1y2 − x2y1)ê3 (1.81)

The above formula then remains valid in orthogonal coordinates if the components are
calculated in the normalized basis.

To construct the cross product in orthogonal coordinates with covariant or contravariant
bases we again must simply normalize the basis vectors, for example:

x× y =
∑

xiei ×
∑

yiei =
∑

xihiêi ×
∑

yihiêi (1.82)

which, written expanded out,

x× y = (x2y3 − x3y2)h2h3

h1
e1 + (x3y1 − x1y3)h1h3

h2
e2 + (x1y2 − x2y1)h1h2

h3
e3 (1.83)

Terse notation for the cross product, which simplifies generalization to non-orthogonal
coordinates and higher dimensions, is possible with the Levi-Civita tensor, which will have
components other than zeros and ones if the scale factors are not all equal to one.

A.3.5 Differentiation

Looking at an infinitesimal displacement from some point, it’s apparent that

dr =
∑ ∂r

∂qi
dqi =

∑
ei dqi (1.84)

By definition, the gradient of a function must satisfy (this definition remains true if ƒ is
any tensor)

df = ∇f · dr ⇒ df = ∇f ·
∑

ei dqi (1.85)

It follows then that del operator must be:

∇ =
∑

ei
∂

∂qi
(1.86)

and this happens to remain true in general curvilinear coordinates. Quantities like the

155

gradient and Laplacian follow through proper application of this operator.

Line element Tangent vector to coordinate curve qi:

d` = hiêi = ∂r
∂qi

(1.87)

Infinitesimal length

d` =
√
dr · dr =

√
h2

1 dq
2
1 + h2

2 dq
2
2 + h2

3 dq
2
3 (1.88)

Surface element Normal to coordinate surface qk = constant:

dS = (hiqiêi)× (hjqj êj)

= hihjqiqj

(
∂r
∂qi
× ∂r
∂qj

)
= hihjqiqj êk (1.89)

Infinitesimal surface:

dSk = hihj dq
i dqj (1.90)

Volume element Infinitesimal volume:

dV = |(h1 dq1ê1) · (h2 dq2ê2)× (h3 dq3ê3)|
= |ê1 · ê2 × ê3|h1h2h3 dq1 dq2 dq3

= J dq1 dq2 dq3

= h1h2h3 dq1 dq2 dq3 (1.91)

where

J =
∣∣∣∣∣ ∂r
∂q1
·
(
∂r
∂q2
× ∂r
∂q3

)∣∣∣∣∣ =
∣∣∣∣∣ ∂(x, y, z)
∂(q1, q2, q3)

∣∣∣∣∣ = h1h2h3 (1.92)

is the Jacobian determinant, which has the geometric interpretation of the deformation
in volume from the infinitesimal cube dx dy dz to the infinitesimal curved volume in the
orthogonal coordinates.

156

A.3.6 Differential Operators

∇φ = ê1

h1

∂φ

∂q1 + ê2

h2

∂φ

∂q2 + ê3

h3

∂φ

∂q3 (1.93)

∇ · F = 1
h1h2h3

[
∂

∂q1 (F1h2h3) + ∂

∂q2 (F2h3h1) + ∂

∂q3 (F3h1h2)
]

(1.94)

∇× F = ê1

h2h3

[
∂

∂q2 (h3F3)− ∂

∂q3 (h2F2)
]

+ ê2

h3h1

[
∂

∂q3 (h1F1)− ∂

∂q1 (h3F3)
]

+ ê3

h1h2

[
∂

∂q1 (h2F2)− ∂

∂q2 (h1F1)
]

= 1
h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3
∂

∂q1
∂

∂q2
∂

∂q3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣∣∣
(1.95)

∇2φ = 1
h1h2h3

[
∂

∂q1

(
h2h3

h1

∂φ

∂q1

)
+ ∂

∂q2

(
h3h1

h2

∂φ

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂φ

∂q3

)]
(1.96)

157

APPENDIX B

GEOMETRY AND OBJECT ORIENTED
PROGRAMMING

B.1 INTRODUCTION

This Appendix discusses the topics of representing the geometrical shapes into program-
ming structures that can be stored in the computer memory using the techniques of Object
Oriented Programming (OOP)

The Computer Language used here is the C# language. The C# language is a microsoft
language that takes its origin from C/C++ Languages but also borrows the concepts of
Virtual Machine Compilation, and Memory Garbage Collection, from other languages like
Java.

When compiling a C# source code, the source code is compiled into an intermediate
language (IL). The intermediate language is low-level representation that looks like the as-
sembly language. It is a special language that all C# code is compiled to. When the program
is compiled, the high-level code is translated into a series of evaluation stack instructions.

OBJECT-ORIENTATION is a set of tools and methods that enable software engineers
to build reliable, user friendly, maintainable, well documented, reusable software systems
that fulfills the requirements of its users. It is claimed that object-orientation provides
software developers with new mind tools to use in solving a wide variety of problems. Object-
orientation provides a new view of computation. A software system is seen as a community
of objects that cooperate with with each other by passing messages in solving a problem.

B.2 OBJECT ORIENTATION CONCEPTS

An object-oriented programming language provides support for the following object-oriented
concepts:

• Objects

• Classes.

• Inheritance.

• Polymorphism.

• Operator overloading.

159

we shall discuss in these concepts in details for their close relevance to the present work.

B.2.1 Objects

In object-oriented programming we create software objects that model real world items.
The objects are modeled after those items in that they have state and behavior. A software
object maintains its state in one or more variables . A variable is an item of data named
by an identifier. The software object implements its behavior with methods. A method is
a function associated with an object, thus in summary “an object is a software bundle of
variables and related methods”.

An object is also known as an instance. For example Karuna’s bicycle is an instance of
a bicycle. It refers to a particular bicycle. Sandile Zuma is an instance of a Student.

The variables of an object are formally known as instance variables because they contain
the state for a particular object or instance. In a running program, there may be many
instances of an object. For example there may be many Student objects. Each of these
objects will have their own instance variables and each object may have different values
stored in their instance variables. For e.g. each Student object will have a different number
stored in its StudentNumber variable.

B.2.2 Classes

In object-oriented programs, it’s possible to have many objects of the same kind that share
common characteristics: rectangles, circles, lines, ..., etc. A class is a software blueprint for
objects and is used to manufacture or create more objects.

The class declares the instance variables necessary to contain the state of every object.
It would also declare and provide implementations for the instance methods necessary to
operate on the state of the object. Thus a class may be defined as “The blueprint that
defines the variables and the methods common to all objects of a certain kind”.

Class may also be considered as a factory for constructing objects. The non-static parts
of the class specify, or describe, what variables and methods the objects will contain. This is
part of the explanation of how objects differ from classes: Objects are created and destroyed
as the program runs, and there can be many objects with the same structure, if they are
created using the same class.

Encapsulation Object diagrams show that an object’s variables make up the center, or
nucleus, of the object. Methods surround and hide the object’s nucleus from other objects in
the program. Packaging an object’s variables within the protective custody of its methods
is called encapsulation.

Encapsulating related variables and methods into a neat software bundle is a simple yet
powerful idea that provides two benefits to software developers:

160

• Modularity: The source code for an object can be written and maintained in- depen-
dently of the source code for other objects. Also, an object can be easily passed around
in the system. You can give your bicycle to someone else, and it will still work.

• Information-hiding: An object has a public interface that other objects can use to
communicate with it. The object can maintain private information and meth- ods
that can be changed at any time without affecting other objects that depend on it.

Messages Software objects interact and communicate with each other by sending messages
to each other. When object A wants object B to perform one of B’s methods, object A sends
a message to object B

There are three parts of a message: The three parts for the message Console.WriteLine(“Hello
World”); are:

• The object to which the message is addressed (Console)

• The name of the method to perform (WriteLine)

• Any parameters needed by the method (“Hello World!”)

B.2.3 Inheritance

When creating a class, instead of writing completely new data members and member func-
tions, the programmer can designate that the new class should inherit the members of an
existing class.

Example of inheritance is the case of a moving objects like cars, and planes. while cars
are moving on the ground, planes are flying in the sky. The move method is considered to
be an abstraction for these types of objects, however the move implementation differes if it
is associated with cars and or planes. Inheritance permits the programmer to inherit the
behaviour of the base object into the new inherited object, but with the ability to change
what it really do while executing the same behaviour.

Another famous example is the speak behaviour of objects. While all creatures can
speak, their language can differ from voice to movement of body. The programmer then
should make a base class called Creature with Speak method to define the behaviour, then
inherting any creature from this super class to make a sub class (derived class) that has the
same named behaviour “Speak” but with different implementation of what is really done.

This existing class is called the base class , and the new class is referred to as the derived
class. (Other programming languages, such as Java, refer to the base class as the superclass
a nd the derived class as the subclass .) A derived class represents a more specialized group
of objects. Typically, a derived class contains behaviors inherited from its base class plus
additional behaviors. A derived class can also customize behaviors inherited from the base
class. A direct base class is the base class from which a derived class explicitly inherits. An
indirect base class i s inherited from two or more levels up the class hierarchy.

161

B.2.4 Polymorphism

Polymorphism enables the programmer to “program in the general” rather than “program
in the specific.” In particular, polymorphism enables the writing of programs that process
objects that share the same superclass in a class hierarchy as if they are all objects of the
superclass; this can simplify programming.

Consider the following example of polymorphism. Suppose we create a program that
simulates the movement of several types of animals for a biological study. Classes Fish, Frog
and Bird represent the three types of animals under investigation. Imagine that each of
these classes extends superclass Animal, which contains a method move and maintains an
animal’s current location as x-y coordinates. Each subclass implements method move. Our
program maintains an array of references to objects of the various Animal subclasses. To
simulate the animals’ movements, the program sends each object the same message once per
second namely, move. However, each specific type of Animal responds to a move message in
a unique way a Fish might swim one meter, a Frog might jump 2 km and a Bird might fly 3
meters. The program issues the same message (i.e., move) to each animal object generically,
but each object knows how to modify its x-y coordinates appropriately for its specific type
of movement. Relying on each object to know how to “do the right thing” (i.e., do what is
appropriate for that type of object) in response to the same method call is the key concept
of polymorphism. The same message (in this case, move) sent to a variety of objects has
“many forms” of results, hence the term polymorphism.

With polymorphism, we can design and implement systems that are easily extensi-
ble—new classes can be added with little or no modification to the general portions of the
program, as long as the new classes are part of the inheritance hierarchy that the program
processes generically. The only parts of a program that must be altered to accommodate
new classes are those that require direct knowledge of the new classes that the programmer
adds to the hierarchy. For example, if we extend class Animal to create class Tortoise (which
might respond to a move message by crawling one inch), we need to write only the Tortoise
class and the part of the simulation that instantiates a Tortoise object. The portions of the
simulation that process each Animal generically can remain the same.

B.2.5 Operator Overloading

In object-oriented programming, operator overloading—less commonly known as operator
ad hoc polymorphism—is a specific case of polymorphism, where different operators have
different implementations depending on their arguments. Operator overloading is generally
defined by the language, the programmer, or both.

Operator overloading is used because it allows the developer to program using notation
closer to the target domain[1] and allows user-defined types a similar level of syntactic
support as types built into the language. It is common, for example, in scientific computing,
where it allows computational representations of mathematical objects to be manipulated

162

with the same syntax as on paper.

B.3 GEOMETRICAL AND MATHEMATICAL TYPES

The algorithm developed for this thesis has gone through careful design process to ease the
programming phase. This section discusses the invented types that was made specially in
the software source code.

Geometrical Computational Types are special user defined types that helps in the 3D
calculations through the entire life of the running program. When implementing these types,
the programmer usually is trying to mimic the mathematical behaviour of these types into the
program code for making it easy to write the rest of the program. For example when making
a vector class that contains three elements of x, y, z the implementor should implement the
mathematical opetrations of this type to simply use one line of code as following:

Vector v1 = new Vector (3 , 2 , 5) ;
Vecto r v2 = new Vector (5 , 3 , 1) ;
Vecto r t o t a l = v1 + v2 ;

The Addition ’+’ operation is implemented through the vector type itself, through what
is called Operator overloading. Writing code with this approach is preferred and readable
through the entire program listing, and it is a more convenient way than implementing the
same code as following:

Vector v1 = new Vector (3 , 2 , 5) ;
Vecto r v2 = new Vector (5 , 3 , 1) ;
Vecto r t o t a l = new Vector (v1 . x+v2 . x , v1 . y+v2 . y , v1 . z+v2 . z)

By implementing such mathematical behaviour in the geomtrical computation types, the
concept of abstraction and re-use of object oriented programming is achieved through the
entire program.

This section will go through a set of geometrical types that have the most influence effect
on writing this thesis algorithms. These types can be summarized into pure mathematical
types, and geometrical mathematical types:

• General Vector

• Plane

• Quadrilateral

• Angle

• Quaternion

• Matrix

163

B.3.1 General Vector

General Vector type is an abstracted concept that hold the information of Euclidean vector
in any coordinate system available throughout the software. The x, y, and z component
names has been replaced with X1, X2, and X3 names to generalize the concept of vector
depending on the current coordinate system.

If the coordinate system is Cartesian system, then the X1, X2, and X3 components
are correspoding to x, y, and z components; However if the coordinate system is Spherical
system, then X1, X2, and X3 components are corresponding to r, θ, and φ components.

The following list that is taken directly from the source code of the software, illustrate
the implementation of this behaviour:

pub l i c s t ruc t Gene r a lVec to r : IEqua tab l e<Gene ra lVec to r>
{

pub l i c double X1 ;
pub l i c double X2 ;
pub l i c double X3 ;
pub l i c ICoo rd i na t eSy s t em Coord inateSys tem
{
get
{

i f (_Coord inateSystem == n u l l)
_Coord inateSystem = Coord ina teSys t ems . C a r t e s i a nCoo r d i n a t e s ;
return _Coord inateSystem ;

}
s e t
{

i f (_Coord inateSystem==n u l l)
_Coord inateSystem = Coord ina teSys t ems . C a r t e s i a nCoo r d i n a t e s ;
va r x = _Coord inateSystem . x (X1 , X2 , X3) ;
va r y = _Coord inateSystem . y (X1 , X2 , X3) ;
va r z = _Coord inateSystem . z (X1 , X2 , X3) ;

_Coord inateSystem = va l u e ;
X1 = _Coord inateSystem . x1 (x , y , z) ;
X2 = _Coord inateSystem . x2 (x , y , z) ;
X3 = _Coord inateSystem . x3 (x , y , z) ;

}
}

}

The software supports the three famous coordinate systems Cartesian (which is the de-
fault Coordinate System), Cylindrical, and Spherical Coordinates. Setting the property of
CoordinateSystem shown in the General Vector type automatically converts the X1, X2, and
X3 values into the corresponding values of this coordinate system.

The coordinate system propery type is of the ICoordinateSystem interface, which is any
Coordinate System class should implement; The following list is for the Spherical coordinate

164

system Class implementation:

pub l i c c l a s s Sphe r i c a l S y s t em : ICoo rd i na t eSy s t em
{

pub l i c double x1 (double x , double y , double z)
{

va r r = Math . Sqr t (Math . Pow(x , 2) + Math . Pow(y , 2) + Math . Pow(z , 2)) ;
return r ;

}

pub l i c double x2 (double x , double y , double z)
{

va r r = x1 (x , y , z) ;
va r t h e t a = Math . Acos (z / r) ;
return t h e t a ;

}

pub l i c double x3 (double x , double y , double z)
{

va r ph i = Math . Atan2 (y , x) ;
return ph i ;

}

pub l i c double x (double x1 , double x2 , double x3)
{

va r x = x1 ∗ Math . S in (x2) ∗ Math . Cos (x3) ;
return x ;

}

pub l i c double y (double x1 , double x2 , double x3)
{

va r y = x1 ∗ Math . S in (x2) ∗ Math . S in (x3) ;
return y ;

}

pub l i c double z (double x1 , double x2 , double x3)
{

va r z = x1 ∗ Math . Cos (x2) ;
return z ;

}
}

Each ICoordinateSystem implemented class should implement the conversion between
its coordinate system and the Cartesian system to help the GeneralVector in converting its
coordinates data according to its current system.The general vector type play a cruical role
in the foundation of the software source code. It is the heart of any point stored in the
memory throughout the program life time.

165

B.3.1.1 General Vector Properties

It is a good practice to include the known vector properties inside the type code. The General
Vector has many useful geometrical information and vector calculations like :

• Coss Product

• Dot Product

• Cosine Angle with Another Vector

• Length (Magnitude)

The following list shows these methods and properties responsible of such operations:
pub l i c Gene r a lVec to r Cros sProduct (Gene r a lVec t o r gp)
{

va r a = t h i s . C lonePo in t (Coo rd ina teSys t ems . C a r t e s i a nCoo r d i n a t e s) ;
va r b = gp . C lonePo in t (Coord ina teSys t ems . C a r t e s i a nCoo r d i n a t e s) ;
va r r e s u l t = Gene r a lVec to r . C a r t e s i a n (

a [2] ∗ b [3] − a [3] ∗ b [2]
, a [3] ∗ b [1] − a [1] ∗ b [3]
, a [1] ∗ b [2] − a [2] ∗ b [1]
) ;

r e s u l t . Coord inateSys tem = t h i s . Coord inateSys tem ;
return r e s u l t ;

}

pub l i c double DotProduct (Gene r a lVec to r gp)
{

va r a = t h i s . C lonePo in t (Coo rd ina teSys t ems . C a r t e s i a nCoo r d i n a t e s) ;
va r b = gp . C lonePo in t (Coord ina teSys t ems . C a r t e s i a nCoo r d i n a t e s) ;
return a [1] ∗ b [1] + a [2] ∗ b [2] + a [3] ∗ b [3] ;

}

pub l i c double Cos ineAng l e (Gene r a lVec t o r t a r g e t)
{

return t h i s . DotProduct (t a r g e t) / t h i s . Ca r t e s i a nLeng th ∗ t a r g e t . Ca r t e s i a nLeng th ;
}

pub l i c double Ca r t e s i a nLeng th
{

get
{

Gene r a lVec to r v = t h i s ;
i f (! I s C a r t e s i a n)
v = t h i s . C lonePo in t (Coo rd ina teSys t ems . C a r t e s i a nCoo r d i n a t e s) ;
return Math . Sqr t (v [1] ∗ v [1] + v [2] ∗ v [2] + v [3] ∗ v [3]) ;

}
}

166

B.3.1.2 General Vector Overloaded Operators

To compelete the concept of the general vector, a processes called operator overloading needs
to be specified in order to use the General Vector as an independent type while writing the
software source code.

The important operators to be overloaded are the plus ’+’, minus ’-’, and multiplication
’*’ signs, and the implementation can be represented as the following source code:

pub l i c s t a t i c Gene r a lVec to r Add(Gene r a lVec to r l e f t P o i n t , Gene r a lVec t o r r i g h t P o i n t)
{

va r rp = r i g h t P o i n t . C lonePo in t (l e f t P o i n t . Coord inateSys tem) ;
l e f t P o i n t . X1 += rp . X1 ;
l e f t P o i n t . X2 += rp . X2 ;
l e f t P o i n t . X3 += rp . X3 ;
return l e f t P o i n t ;

}
pub l i c s t a t i c Gene r a lVec to r Sub t r a c t (Gene r a lVec to r l e f t P o i n t , Gene r a lVec to r r i g h t P o i n t)
{

va r rp = r i g h t P o i n t . C lonePo in t (l e f t P o i n t . Coord inateSys tem) ;
l e f t P o i n t . X1 −= rp . X1 ;
l e f t P o i n t . X2 −= rp . X2 ;
l e f t P o i n t . X3 −= rp . X3 ;
return l e f t P o i n t ;

}
pub l i c s t a t i c Gene r a lVec to r operator +(Gene r a lVec t o r l e f t P o i n t , Gene r a lVec to r r i g h t P o i n t)
{

return Add(l e f t P o i n t , r i g h t P o i n t) ;
}
pub l i c s t a t i c Gene r a lVec to r operator −(Gene r a lVec t o r l e f t P o i n t , Gene r a lVec to r r i g h t P o i n t)
{

return Sub t r a c t (l e f t P o i n t , r i g h t P o i n t) ;
}
pub l i c s t a t i c Gene r a lVec to r operator ∗(Gene r a lVec to r po in t , double s c a l a r)
{

va r p = po i n t ;
p . X1 ∗= s c a l a r ;
p . X2 ∗= s c a l a r ;
p . X3 ∗= s c a l a r ;
return p ;

}
pub l i c s t a t i c Gene r a lVec to r operator ∗(double s c a l a r , Gene r a lVec to r p o i n t)
{

va r p = po i n t ;
p . X1 ∗= s c a l a r ;
p . X2 ∗= s c a l a r ;
p . X3 ∗= s c a l a r ;
return p ;

}

167

B.3.2 Plane

One of the foundation objects in the software source code is the Plane class. the Plane class
permits you to represent 3D plane in the memory with equation of plane using the symbolic
representation.

The plane equation aX + bY + cZ + d = 0 is stored in the Plane class as a symbolic
variable.
pub l i c c l a s s Plane
{

pub l i c readonly Symbo l i cVa r i a b l e Equat ion ;
pub l i c readonly Gene r a lVec to r NormalVector ;
pub l i c readonly double A, B, C , D; // p l ane c o e f f i c i e n t s Ax+By
pub l i c Plane (S ymbo l i cVa r i a b l e equa t i on)
{

Equat ion = equa t i on ;
va r a = Equat ion . C o e f f i c i e n tO f (" x ") ;
va r b = Equat ion . C o e f f i c i e n tO f (" y ") ;
va r c = Equat ion . C o e f f i c i e n tO f (" z ") ;
va r d = Equat ion . C o e f f i c i e n tO f (" ") ;
A = a . HasValue ? a . Value : 0 ;
B = b . HasValue ? b . Value : 0 ;
C = c . HasValue ? c . Value : 0 ;
D = d . HasValue ? d . Value : 0 ;
NormalVector = Gene r a lVec to r . C a r t e s i a n (A, B, C) ;

}
}

The plane object can be created with two approaches:

• Point and Normal Vector from this point.

• Three Points.

pub l i c s t a t i c Plane FromNormalAndPoint (Gene r a lVec to r normalVector , Gene r a lVec t o r p o i n t)
{

va r p l ane = Symbo l i cVa r i a b l e . Parse (" a ∗(x−$x)+b∗(y−$y)+c ∗(z−$z) ") ;
p l ane = p l ane . S u b s t i t u t e (" a " , norma lVecto r . X1) ;
p l ane = p l ane . S u b s t i t u t e ("b" , norma lVecto r . X2) ;
p l ane = p l ane . S u b s t i t u t e (" c " , norma lVecto r . X3) ;
p l ane = p l ane . S u b s t i t u t e (" $x " , p o i n t . X1) ;
p l ane = p l ane . S u b s t i t u t e (" $y " , p o i n t . X2) ;
p l ane = p l ane . S u b s t i t u t e (" $z " , p o i n t . X3) ;
return new Plane (p l ane) ;

}

pub l i c s t a t i c Plane FromThreePoints (Gene r a lVec to r a , Gene r a lVec t o r b , Gene r a lVec to r c)
{

Gene r a lVec to r v1 = b − a ;
Gene r a lVec to r v2 = c − b ;

168

Gene r a lVec to r NormalVector = v1 . Cros sProduct (v2) ;
va r p l ane = Symbo l i cVa r i a b l e . Parse (" a ∗(x−$x)+b∗(y−$y)+c ∗(z−$z) ") ;
p l ane = p l ane . S u b s t i t u t e (" a " , NormalVector . X1) ;
p l ane = p l ane . S u b s t i t u t e ("b" , NormalVector . X2) ;
p l ane = p l ane . S u b s t i t u t e (" c " , NormalVector . X3) ;
p l ane = p l ane . S u b s t i t u t e (" $x " , a . X1) ;
p l ane = p l ane . S u b s t i t u t e (" $y " , a . X2) ;
p l ane = p l ane . S u b s t i t u t e (" $z " , a . X3) ;
return new Plane (p l ane) ;

}

There is also an important function that checks if certain point lies on the plane or not.

pub l i c bool HasPoint (Gene r a lVec t o r p o i n t)
{

// the p l ane equa t i on shou ld be equa l to z e r o when s u b s t i t u t i n g p o i n t x , y , z
Di c t i o na r y <s t r ing , double> va l u e s = new Di c t i o na r y <s t r ing , double >();
foreach (va r symbol i n Equat ion . I n vo l v edSymbo l s)
{

i f (symbol . Equa l s (" x " , S t r i ngCompar i son . O rd i n a l I g no r eCa s e)) v a l u e s . Add(" x " , p o i n t .X) ;
i f (symbol . Equa l s (" y " , S t r i ngCompar i son . O rd i n a l I g no r eCa s e)) v a l u e s . Add(" y " , p o i n t .Y) ;
i f (symbol . Equa l s (" z " , S t r i ngCompar i son . O r d i n a l I g n o r eCa s e)) v a l u e s . Add(" z " , p o i n t . Z) ;

}
double r e s u l t = Math . Abs (Equat ion . Execute (v a l u e s)) ;
double d i f f = r e s u l t − 0 ;
i f (d i f f < 0 .00001) return true ;
// e x p e r i m e n t a l d i f f e r e n c e on the b a s i s t ha t my u n i t v a l u e s a r e i n m i l l i meter

return f a l s e ;
}

B.3.3 Quadrilateral

Quadrilateral type is a class that store four points to express a quadrilateral shape and also
have a many useful operations for calculating the normal of shape besied the angles of each
corner. The main objective of this type is to be used in memory storage of discovered cells
while gridding.

pub l i c s t ruc t Qu a d r i l a t e r a l
{

pub l i c Gene r a lVec to r TopLeft ;
pub l i c Gene r a lVec to r BottomLeft ;
pub l i c Gene r a lVec to r TopRight ;
pub l i c Gene r a lVec to r BottomRight ;

pr i va te Gene r a lVec to r _QuadNormal ;
pub l i c Gene r a lVec to r TopLeft_VertexNormal ;
pub l i c Gene r a lVec to r BottomLeft_VertextNormal ;
pub l i c Gene r a lVec to r TopRight_VertexNormal ;
pub l i c Gene r a lVec to r BottomRight_VertexNormal ;

169

pub l i c Gene r a lVec to r Normal
{

ge t
{

i f (_QuadNormal . I s Z e r o)
{

// get the v e c t o r s o f quad .
va r a = BottomLeft − TopLeft ;

va r b = BottomRight − BottomLeft ;
va r c = TopRight − TopRight ;
va r d = TopLeft − TopRight ;
// f i r s t normal f o r a−b p l ane a x b
va r n1 = a . Cros sProduct (b) ;
// second normal f o r c−d p l ane c x d
va r n2 = c . Cros sProduct (d) ;
_QuadNormal = ((n1 + n2) / 2) . Norma l i ze () ;

}
return _QuadNormal ;

}
}

pub l i c Gene r a lVec to r C l o ckWi s eLe f tVec to r
{

get
{

return TopLeft − BottomLeft ;
}

}
pub l i c Gene r a lVec to r Coun te rC lockWi s eLe f tVec to r
{

get
{

return BottomLeft − TopLeft ;
}

}
pub l i c Gene r a lVec to r ClockWiseBottomVector
{

get
{

return BottomLeft − BottomRight ;
}

}
pub l i c Gene r a lVec to r CounterClockWiseBottomVector
{

get
{

return BottomRight − BottomLeft ;

170

}
}
pub l i c Gene r a lVec to r C lockWiseR igh tVec to r
{

get
{

return BottomRight − TopRight ;
}

}
pub l i c Gene r a lVec to r Counte rC lockWiseR igh tVec to r
{

get
{

return TopRight − BottomRight ;
}

}
pub l i c Gene r a lVec to r ClockWiseTopVector
{

get
{

return TopRight − TopLeft ;
}

}
pub l i c Gene r a lVec to r CounterClockWiseTopVector
{

get
{

return TopLeft − TopRight ;
}

}
pub l i c Angle TopLef tAng le
{

get
{

va r c t h e t a =
ClockWiseTopVector . Norma l i ze () . Cos ineAng l e (

Counte rC lockWi s eLe f tVec to r . Norma l i ze ()
) ;
return Math . Acos (c t h e t a) ;

}
}
pub l i c Angle BottomLeftAngle
{

get
{

va r c t h e t a =
C lockWi s eLe f tVec to r . Norma l i ze () . Cos ineAng l e (

CounterClockWiseBottomVector . Norma l i ze ()
) ;

171

return Math . Acos (c t h e t a) ;
}

}
pub l i c Angle BottomRightAngle
{

get
{

va r c t h e t a =
ClockWiseBottomVector . Norma l i ze () . Cos ineAng l e (

Counte rC lockWiseR igh tVec to r . Norma l i ze ()
) ;

return Math . Acos (c t h e t a) ;
}

}
pub l i c Angle TopRightAngle
{

get
{

va r c t h e t a =
ClockWiseR igh tVec to r . Norma l i ze () . Cos ineAng l e (

CounterClockWiseTopVector . Norma l i ze ()
) ;
return Math . Acos (c t h e t a) ;

}
}
pub l i c bool I s C y c l i c
{

ge t
{

Angle s s = TopRightAngle + BottomLeftAngle ;
i f (s s . Degrees == 180) return true ;
return f a l s e ;

}
}
pub l i c bool I s R e c t a n g l e
{

get
{

bool t r = TopRightAngle . Degrees == 90 . 0 ;
bool t l = TopLef tAng le . Degrees == 90 . 0 ;
bool b l = BottomLeftAngle . Degrees == 90 . 0 ;
bool br = BottomRightAngle . Degrees == 90 . 0 ;
return (t r & t l & b l & br) ;

}
}

}

172

B.3.4 Angle

Abstracting the angle from double value into its own custom type has proved to be excellent
for writing the software source code. It helped a lot while debugging the code due to the
ability of this type to show more information about the angle:

• Angle in Radian

• Angle in Degrees

• Revolutions count in case of angle more than 360 degree

• Absolute Angle

pub l i c s t ruc t Angle
{

pr i va te readonly double _rad i an s ;
pub l i c Angle (double r a d i a n s)
{

_rad i an s = r a d i a n s ;
}
pub l i c s t a t i c Angle FromDegrees (double deg r e e s)
{

va r r = deg r e e s ∗ Math . PI / 180 ;
return new Angle (r) ;

}
pub l i c double Rad ians
{

get
{

return _rad i an s ;
}

}
pub l i c double Degrees
{

get
{

return _rad i an s ∗ 180 / Math . PI ;
}

}

pub l i c double Revo l u t i o n s
{

get
{

return _rad i an s / (2 ∗ Math . PI) ;
}

}

pub l i c Angle Abso lu t eAng l e

173

{
get
{

i f (R e v o l u t i o n s <= 1)
{

i f (_ rad i an s >= 0)
return new Angle (_rad i an s) ;

e l s e
return new Angle (2 ∗ Math . PI + _rad i an s) ;

}
e l s e
{

i n t r e v s = (i n t)Math . F l o o r (R e v o l u t i o n s) ;
double g = Revo l u t i o n s − r e v s ;
i f (g >= 0) return new Angle (g) ;
e l s e return new Angle (2 ∗ Math . PI + g) ;

}
}

}
}

B.3.5 Quaternion

Quaternion can be considered as an extension to complex numbers. This special type is
essential in any graphical software, because its the heart of all rotations in this software.
Quaternion express a rotation; Multiplication of two rotations is another rotation.
pub l i c s t ruc t Quate rn ion : IEqua tab l e<Quatern ion>
{

pr i va te double a ;
pr i va te double b ;
pr i va te double c ;
pr i va te double d ;
pub l i c s t a t i c Quate rn ion operator +(Quate rn ion l h s , Quate rn ion r h s)
{

Quate rn ion r e s u l t = new Quate rn ion (l h s) ;
r e s u l t . a += rh s . a ;
r e s u l t . b += rh s . b ;
r e s u l t . c += rh s . c ;
r e s u l t . d += rh s . d ;
return r e s u l t ;

}

pub l i c s t a t i c Quate rn ion operator −(Quate rn ion l h s , Quate rn ion r h s)
{

Quate rn ion r e s u l t = new Quate rn ion (l h s) ;
r e s u l t . a −= rh s . a ;
r e s u l t . b −= rh s . b ;
r e s u l t . c −= rh s . c ;

174

r e s u l t . d −= rh s . d ;
return r e s u l t ;

}

pub l i c s t a t i c Quate rn ion operator ∗(Quate rn ion l h s , Quate rn ion r h s)
{

double a r = (rh s . a) ;
double br = (rh s . b) ;
double c r = (rh s . c) ;
double dr = (rh s . d) ;
double at = l h s . a ∗ a r − l h s . b ∗ br − l h s . c ∗ c r − l h s . d ∗ dr ;
double bt = l h s . a ∗ br + l h s . b ∗ a r + l h s . c ∗ dr − l h s . d ∗ c r ;
double c t = l h s . a ∗ c r − l h s . b ∗ dr + l h s . c ∗ a r + l h s . d ∗ br ;
double dt = l h s . a ∗ dr + l h s . b ∗ c r − l h s . c ∗ br + l h s . d ∗ a r ;
Quate rn ion r e s u l t = new Quate rn ion (at , bt , ct , dt) ;
return r e s u l t ;

}

pub l i c s t a t i c Quate rn ion operator /(Quate rn ion l h s , Quate rn ion r h s)
{

double a r = (rh s . a) ;
double br = (rh s . b) ;
double c r = (rh s . c) ;
double dr = (rh s . d) ;
double denominator = ar ∗ a r + br ∗ br + c r ∗ c r + dr ∗ dr ;
double at = (l h s . a ∗ a r + l h s . b ∗ br + l h s . c ∗ c r + l h s . d ∗ dr) / denominator ;
double bt = (− l h s . a ∗ br + l h s . b ∗ a r − l h s . c ∗ dr + l h s . d ∗ c r) / denominator ;
double c t = (− l h s . a ∗ c r + l h s . b ∗ dr + l h s . c ∗ a r − l h s . d ∗ br) / denominator ;
double dt = (− l h s . a ∗ dr − l h s . b ∗ c r + l h s . c ∗ br + l h s . d ∗ a r) / denominator ;
Quate rn ion r e s u l t = new Quate rn ion (at , bt , ct , dt) ;
return r e s u l t ;

}
}

B.3.6 Matrix

All graphical operations including 3D transformations needs a sort of matrix. The matrix
type is implemented into the source code to make it easy for adding or multiplying matrices.
pub l i c c l a s s Matr i x
{

pub l i c i n t rows ;
pub l i c i n t c o l s ;
pub l i c double [,] mat ;
pub l i c Matr i x L ;
pub l i c Matr i x U;
pr i va te i n t [] p i ;
pr i va te double detOfP = 1 ;
pub l i c Matr i x (i n t iRows , i n t i C o l s)

175

{
rows = iRows ;
c o l s = i C o l s ;
mat = new double [rows , c o l s] ;

}
pub l i c Boolean I s Squa r e ()
{

return (rows == c o l s) ;
}
pub l i c double t h i s [i n t iRow , i n t i C o l]
{

ge t { return mat [iRow , i C o l] ; }
s e t { mat [iRow , i C o l] = va l u e ; }

}
}

The most important matrix operation is the multiplication of matrices. Many algorithms
of multiplication has been implemented for the matrix. A straight forward matrix multiplica-
tion that obeys the elementary lessons in teaching matrix multiplication can be implemented
as follow:

pub l i c s t a t i c Matr i x S t u p i dMu l t i p l y (Mat r i x m1, Matr i x m2)
{

i f (m1 . c o l s != m2 . rows) throw new MException ("Wrong␣ d imens i on s ␣ o f ␣mat r i x ! ") ;
Mat r i x r e s u l t = ZeroMat r i x (m1 . rows , m2 . c o l s) ;
f o r (i n t i = 0 ; i < r e s u l t . rows ; i++)

f o r (i n t j = 0 ; j < r e s u l t . c o l s ; j++)
f o r (i n t k = 0 ; k < m1. c o l s ; k++)

r e s u l t [i , j] += m1[i , k] ∗ m2[k , j] ;
return r e s u l t ;

}

However the problem of this multiplication lies in its performance. The running time of
this algorithm is O (n3). Another algorithm such Strassen’s algorithm, devised by Volker
Strassen in 1969 and often referred to as “fast matrix multiplication”. It is based on a way
of multiplying two 2x2 matrices which requires only 7 multiplications (instead of the usual
8), at the expense of several additional addition and subtraction operations. Applying this
recursively gives an algorithm with a multiplicative cost of O

(
nlog2 7

)
≈ O (n2.807). The

source code of Strassen matrix calculation can be found in the following code:

pr i va te s t a t i c Matr i x S t r a s s e nMu l t i p l y (Matr i x A, Mat r i x B)
{

i f (A . c o l s != B. rows) throw new MException ("Wrong␣ d imens ion ␣ o f ␣mat r i x ! ") ;
Mat r i x R ;
i n t msize = Math .Max(Math .Max(A . rows , A . c o l s) , Math .Max(B . rows , B . c o l s)) ;
i f (ms ize < 32)
{

R = ZeroMat r i x (A . rows , B . c o l s) ;
f o r (i n t i = 0 ; i < R . rows ; i++)

176

f o r (i n t j = 0 ; j < R . c o l s ; j++)
f o r (i n t k = 0 ; k < A. c o l s ; k++)

R [i , j] += A[i , k] ∗ B[k , j] ;
return R;

}
i n t s i z e = 1 ; i n t n = 0 ;
whi le (ms ize > s i z e) { s i z e ∗= 2 ; n++; } ;
i n t h = s i z e / 2 ;

Mat r i x [,] mFie ld = new Matr i x [n , 9] ;
/∗
∗ 8x8 , 8x8 , 8x8 , . . .
∗ 4x4 , 4x4 , 4x4 , . . .
∗ 2x2 , 2x2 , 2x2 , . . .
∗ . . .
∗/
i n t z ;
f o r (i n t i = 0 ; i < n−4; i++) // rows
{

z = (i n t)Math . Pow(2 , n − i − 1) ;
f o r (i n t j = 0 ; j < 9 ; j++) mFie ld [i , j] = new Matr i x (z , z) ;

}
Sa feAp lusB in toC (A, 0 , 0 , A, h , h , mFie ld [0 , 0] , h) ;
Sa feAp lusB in toC (B, 0 , 0 , B, h , h , mFie ld [0 , 1] , h) ;
S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 1] , 1 , mFie ld)

;

Sa feAp lusB in toC (A, 0 , h , A, h , h , mFie ld [0 , 0] , h) ;
SafeACopytoC (B, 0 , 0 , mFie ld [0 , 1] , h) ;
S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 2] , 1 , mFie ld)

;

SafeACopytoC (A, 0 , 0 , mFie ld [0 , 0] , h) ;
SafeAminusBintoC (B, h , 0 , B, h , h , mFie ld [0 , 1] , h) ;
S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 3] , 1 , mFie ld)

;

SafeACopytoC (A, h , h , mFie ld [0 , 0] , h) ;
SafeAminusBintoC (B, 0 , h , B, 0 , 0 , mFie ld [0 , 1] , h) ;
S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 4] , 1 , mFie ld)

;

Sa feAp lusB in toC (A, 0 , 0 , A, h , 0 , mFie ld [0 , 0] , h) ;
SafeACopytoC (B, h , h , mFie ld [0 , 1] , h) ;
S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 5] , 1 , mFie ld)

;

SafeAminusBintoC (A, 0 , h , A, 0 , 0 , mFie ld [0 , 0] , h) ;
Sa feAp lusB in toC (B, 0 , 0 , B, h , 0 , mFie ld [0 , 1] , h) ;

177

S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 6] , 1 , mFie ld)
;

SafeAminusBintoC (A, h , 0 , A, h , h , mFie ld [0 , 0] , h) ;
Sa feAp lusB in toC (B, 0 , h , B, h , h , mFie ld [0 , 1] , h) ;
S t r a s s enMu l t i p l yRun (mFie ld [0 , 0] , mFie ld [0 , 1] , mFie ld [0 , 1 + 7] , 1 , mFie ld)

;

R = new Matr i x (A . rows , B . c o l s) ;
/// C11
f o r (i n t i = 0 ; i < Math . Min (h , R . rows) ; i++) // rows

f o r (i n t j = 0 ; j < Math . Min (h , R . c o l s) ; j++) // c o l s
R[i , j] = mFie ld [0 , 1 + 1] [i , j] + mFie ld [0 , 1 + 4] [i , j] − mFie ld [0 , 1

+ 5] [i , j] + mFie ld [0 , 1+7] [i , j] ;

/// C12
f o r (i n t i = 0 ; i < Math . Min (h , R . rows) ; i++) // rows

f o r (i n t j = h ; j < Math . Min (2∗h , R . c o l s) ; j++) // c o l s
R[i , j] = mFie ld [0 , 1 + 3] [i , j − h] + mFie ld [0 , 1 + 5] [i , j − h] ;

/// C21
f o r (i n t i = h ; i < Math . Min (2∗h , R . rows) ; i++) // rows

f o r (i n t j = 0 ; j < Math . Min (h , R . c o l s) ; j++) // c o l s
R[i , j] = mFie ld [0 , 1 + 2] [i − h , j] + mFie ld [0 , 1 + 4] [i − h , j] ;

/// C22
f o r (i n t i = h ; i < Math . Min (2 ∗ h , R . rows) ; i++) // rows

f o r (i n t j = h ; j < Math . Min (2 ∗ h , R . c o l s) ; j++) // c o l s
R[i , j] = mFie ld [0 , 1 + 1] [i − h , j − h] − mFie ld [0 , 1 + 2] [i − h , j − h

] + mFie ld [0 , 1 + 3] [i − h , j − h] + mFie ld [0 , 1 + 6] [i − h , j − h] ;

return R;
}

B.4 GRAPHICAL MODELING CLASSES

This section describes the classes that is used in the visualization of the geomtric types like
lines and cirlces. Objects of these classes are capapable of using the computer graphic card
through the OpenGL library to display its contents on the computer screen.

OpenGL (Open Graphics Library) is a code library (first invented by Sillicon Graphics)
that gives the programmer a set of functions that helps in drawing 3D graphics.

B.4.1 Space Point

Space Point Class is a 3D modeling object that can be viewed in the viewport of the software.
This class holds General Vector Type named Center which contains the location of the point
in the 3D space.

It is very important to distinguish between the Space Point object and its Center, because

178

it is valid to have many space points with the same center. However there is no two identical
space points event if their Center field are the same.

The Space Point class can be abstracted to the following list
pub l i c c l a s s SpacePo int : Model
{

pub l i c SpacePo int (Gene r a lVec t o r p o s i t i o n)
{

Cente r = p o s i t i o n ;
}

}

B.4.2 Space Line

Space Line Class is a 3D modeling object that contains two members of Space Point Objects.
This is another important data structure decesion that all modeling classes contains their
sub members from others modeling classes.
pub l i c c l a s s SpaceL ine : Model , ICu r ve
{

pr i va te SpacePo int _F i r s tPo i n t ;
pr i va te SpacePo int _LastPo int ;
pub l i c SpaceL ine (Gene r a lVec to r f i r s t P o i n t , Gene r a lVec to r s econdPo in t)
{

_F i r s tPo i n t = new SpacePo int (f i r s t P o i n t) ;
_LastPo int = new SpacePo int (s econdPo in t) ;

}
}

B.4.3 Line Strip

Line Strip Class is a 3D modeling object that contains an array of Space Points, and array
of Space Lines.

Between every two successive Space Points, there is one Space Line Object. It is impor-
tant to mention that the second space point is always existing in two Space Lines.
pub l i c c l a s s L i n e S t r i p : Model
{

pub l i c L i s t <SpacePoint> Po in t s = new L i s t <SpacePoint >() ;
L i s t <SpaceLine> _Lines = new L i s t <SpaceLine >() ;
pub l i c void AddPoint (SpacePo int po i n t)
{

po i n t . Owner = t h i s ;
i f (Po i n t s . Count > 0)
{

SpaceL ine s l = new SpaceL ine (Po i n t s . Las t () , p o i n t) ;
_L ines . Add(s l) ;

}

179

Po in t s . Add(po i n t) ;
R e f r e s hCen t r o i d () ;

}
}

The Line Strip class contains a method for calculaing the centroid of the polygon that
the object of line strip represents.

pub l i c s t a t i c Gene r a lVec to r C a l c u l a t eC e n t r o i d (SpacePo int [] p o i n t s)
{

// ht tp : // s t a c k o v e r f l o w . com/ q u e s t i o n s /2792443/ f i n d i n g−the−c e n t r o i d−of−a−po lygon
Gene r a lVec to r c e n t r o i d = Gene r a lVec to r . C a r t e s i a n (0 , 0 , 0) ;
i f (p o i n t s == n u l l | | p o i n t s . Length == 0) return c e n t r o i d ;
double s i gnedArea = 0 . 0 ;
double x0 = 0 . 0 ;
double y0 = 0 . 0 ;
double x1 = 0 . 0 ;
double y1 = 0 . 0 ;

double a = 0 . 0 ;
i n t i = 0 ;
f o r (i = 0 ; i < p o i n t s . Length − 1 ; ++i)
{

x0 = po i n t s [i] . Cente r . X1 ;
y0 = po i n t s [i] . Cente r . X2 ;
x1 = po i n t s [i + 1] . Cente r . X1 ;
y1 = po i n t s [i + 1] . Cente r . X2 ;
a = x0 ∗ y1 − x1 ∗ y0 ;
s i gnedArea += a ;
c e n t r o i d . X1 += (x0 + x1) ∗ a ;
c e n t r o i d . X2 += (y0 + y1) ∗ a ;

}
x0 = po i n t s [i] . Cente r . X1 ;
y0 = po i n t s [i] . Cente r . X2 ;
x1 = po i n t s [0] . Cente r . X1 ;
y1 = po i n t s [0] . Cente r . X2 ;
a = x0 ∗ y1 − x1 ∗ y0 ;
s i gnedArea += a ;
c e n t r o i d . X1 += (x0 + x1) ∗ a ;
c e n t r o i d . X2 += (y0 + y1) ∗ a ;
s i gnedArea ∗= 0 . 5 ;
c e n t r o i d . X1 /= (6 ∗ s i gnedArea) ;
c e n t r o i d . X2 /= (6 ∗ s i gnedArea) ;
return c e n t r o i d ;

}

180

B.4.4 Space Bezier Curve

Space Bezier Curve Class is a 3D modeling class that represents bezier curve with four
control points, the control points are of the Space Point objects. This class is also able to
deduce the curver parametric equations C(x(t), y(t), z(t))

pub l i c c l a s s SpaceBez i e rCu rve : Model , I1DTopology
{

pr i va te L i s t <SpacePoint> _Cont ro lPo i n t s = new L i s t <SpacePoint >(4) ;
pub l i c SpaceBez i e rCu rve (SpacePo int cp1 , SpacePo int cp2 , SpacePo int cp3 ,

SpacePo int cp4) : base ()
{

S u r f a c eMa t e r i a l = Ma t e r i a l s . Po l i shed_Go ld ;
cp1 . Owner = t h i s ;
cp2 . Owner = t h i s ;
cp3 . Owner = t h i s ;
cp4 . Owner = t h i s ;
_Con t ro lPo i n t s . Add(cp1) ;
_Con t ro lPo i n t s . Add(cp2) ;
_Con t ro lPo i n t s . Add(cp3) ;
_Con t ro lPo i n t s . Add(cp4) ;

}

pub l i c double Ax(i n t i n d e x)
{

i f (i nd ex == 0) return _Cont ro lPo i n t s [0] . Cente r . X1 ;
i f (i nd ex == 1)
{

return 3 ∗ (_Cont ro lPo i n t s [1] . Cente r . X1 − _Cont ro lPo i n t s [0] . Cente r . X1) ;
}
i f (i nd ex == 2)
{

return 3 ∗ (_Cont ro lPo i n t s [2] . Cente r . X1 − _Cont ro lPo i n t s [1] . Cente r . X1) −
Ax (1) ; }

i f (i nd ex == 3)
{

return (_Cont ro lPo i n t s [3] . Cente r . X1 − _Cont ro lPo i n t s [0] . Cente r . X1) − Ax
(2) − Ax (1) ;

}
throw new ArgumentExcept ion ("Only␣ from␣0␣ to ␣3␣ to ␣ get ␣ the ␣ c o e f f i c i e n t ") ;

}

pub l i c double Ay(i n t i n d e x)
{

i f (i nd ex == 0) return _Cont ro lPo i n t s [0] . Cente r . X2 ;
i f (i nd ex == 1)
{

return 3 ∗ (_Cont ro lPo i n t s [1] . Cente r . X2 − _Cont ro lPo i n t s [0] . Cente r . X2) ;
}

181

i f (i nd ex == 2)
{

return 3 ∗ (_Cont ro lPo i n t s [2] . Cente r . X2 − _Cont ro lPo i n t s [1] . Cente r . X2) −
Ay (1) ;

}
i f (i nd ex == 3)
{

return (_Cont ro lPo i n t s [3] . Cente r . X2 − _Cont ro lPo i n t s [0] . Cente r . X2) − Ay
(2) − Ay (1) ;

}
throw new ArgumentExcept ion ("Only␣ from␣0␣ to ␣3␣ to ␣ get ␣ the ␣ c o e f f i c i e n t ") ;

}

pub l i c double Az(i n t i n d e x)
{

i f (i nd ex == 0) return _Cont ro lPo i n t s [0] . Cente r . X3 ;
i f (i nd ex == 1)
{

return 3 ∗ (_Cont ro lPo i n t s [1] . Cente r . X3 − _Cont ro lPo i n t s [0] . Cente r . X3) ;
}
i f (i nd ex == 2)
{

return 3 ∗ (_Cont ro lPo i n t s [2] . Cente r . X3 − _Cont ro lPo i n t s [1] . Cente r . X3) −
Az (1) ;

}
i f (i nd ex == 3)
{

return (_Cont ro lPo i n t s [3] . Cente r . X3 − _Cont ro lPo i n t s [0] . Cente r . X3) − Az
(2) − Az (1) ;

}
throw new ArgumentExcept ion ("Only␣ from␣0␣ to ␣3␣ to ␣ get ␣ the ␣ c o e f f i c i e n t ") ;

}

pub l i c s t r i n g XFunct ion
{

get
{

return Ax (3) . ToSt r ing () + "∗ t^3+" + Ax (2) . ToSt r ing () + "∗ t^2+" + Ax (1) .
ToSt r ing () + "∗ t+" + Ax (0) . ToSt r ing () ;

}
}

pub l i c s t r i n g YFunct ion
{

get
{

return Ay (3) . ToSt r ing () + "∗ t^3+" + Ay (2) . ToSt r ing () + "∗ t^2+" + Ay (1) .
ToSt r ing () + "∗ t+" + Ay (0) . ToSt r ing () ;

}

182

}

pub l i c s t r i n g ZFunct ion
{

get
{

return Az (3) . ToSt r ing () + "∗ t^3+" + Az (2) . ToSt r ing () + "∗ t^2+" + Az (1) .
ToSt r ing () + "∗ t+" + Az (0) . ToSt r ing () ;

}
}

}

The class has an important properties like the Length as follows

pub l i c double Length
{

get
{

i f (! l e n g t h . HasValue)
{

// l e n g t h o f cu r v e i s ob t a i n ed by I n t e g r a t i o n o f
// i n t e g r a t i o n (s q r t ((dx/ dt)^2 + (dy/ dt)^2 + (dz/ dt)^2))
// or n u m e r i c a l l y by g e t t i n g the p o i n t s o f the cu r ve and g e t t i n g l e n g t h between
// e v e r y two p o i n t s and summing them up .
const double i n t e r v a l = 0 . 0 1 ;
double Tota l = 0 . 0 ;
double t = 0 . 0 ;
Gene r a lVec to r P r e v i o u sPo i n t = Execute (t) ;
t += i n t e r v a l ;
Gene r a lVec to r Cu r r en tPo i n t = Execute (t) ;
f o r (; t <= 1 ; t += i n t e r v a l)
{

// c a l c u l a t e l e n g t h between c u r r e n t p o i n t and p r e v i o u s p o i n t
// then accumulate the r e s u l t .
va r l = Cu r r en tPo i n t − Pr e v i o u sPo i n t ;
Tota l += l . Ca r t e s i a nLeng th ;
P r e v i o u sPo i n t = Cu r r en tPo i n t ;
Cu r r en tPo i n t = Execute (t) ;

}
l e n g t h = Tota l ;
}
return l e n g t h . Value ;

}
}

B.4.5 Space Circle

Space Circle Class is a 3D Modeling class that contains an array of caluculated space points
based on center and radius of this circle.

183

pub l i c c l a s s Spa c eC i r c l e : Model , I1DTopology , I G r i d d a b l e
{

SpacePo int _Rad iusPo int ;
pr i va te i n t _Segments ;
SpacePo int _Centro id ;
Gene r a lVec to r UpVector ;
L i s t <Gene ra lVec to r> _C i r c l eP o i n t s ;

void C a l c u l a t e C i r c l e P o i n t s ()
{

_C i r c l e P o i n t s = new L i s t <Gene ra lVec to r >(Segments) ;
double s t e p = (2 . 0 ∗ Math . PI) / Segments ;
va r rad = Rad ius ;
Ax i s a x i s = Ax i s . CustomAxis (NormalVector) ;
va r p o i n t s = a x i s . Revo l ve (Rad iusVector , 2 ∗ Math . PI , Segments) ;
// t r a n s l a t e the p o i n t s to beg in from c e n t e r .
f o r (i n t i = 0 ; i < p o i n t s . Length ; i++)

p o i n t s [i]+=_Centro id . Cente r ; _C i r c l eP o i n t s . AddRange (p o i n t s) ;
}

}

B.4.6 Space Arc

Space Arc Class is a 3D Modeling class that contains an array of space points based on three
points to draw the arc between them. The following list illustrate the calculations of the arc
based on the input of three points.
pub l i c c l a s s SpaceArc : Model , I1DTopology
{

SpacePo int _F i r s tPo i n t , _SecondPoint , _Thi rdPo int ;
SpaceL ine _ArcWatar ;
L i s t <Gene ra lVec to r> _ArcPoints ;
pub l i c SpaceArc (SpacePo int f i r s t P o i n t , SpacePo int t h i r d P o i n t) : base ()
{

_F i r s tPo i n t = f i r s t P o i n t ;
_Thi rdPo int = t h i r dP o i n t ;
_F i r s tPo i n t . Owner = t h i s ;
_Thi rdPo int . Owner = t h i s ;
_ArcWatar = new SpaceL ine (f i r s t P o i n t , t h i r d P o i n t) ;

}
double Ca l cCen te r (out Gene r a lVec to r c_cente r)
{

va r pt1 = _F i r s tPo i n t . Cente r ;
va r pt2 = _SecondPoint . Cente r ;
va r pt3 = _Thi rdPo int . Cente r ;
double yDelta_a = pt2 .Y − pt1 .Y ;
double xDelta_a = pt2 .X − pt1 .X ;
double yDelta_b = pt3 .Y − pt2 .Y ;
double xDelta_b = pt3 .X − pt2 .X ;

184

i f (Math . Abs (xDelta_a) <= 0.000000001 && Math . Abs (yDelta_b) <= 0.000000001)
{

c_cente r = Gene r a lVec to r . C a r t e s i a n (0 . 5 ∗ (pt2 .X + pt3 .X)
, 0 . 5 ∗ (pt1 .Y + pt2 .Y) , pt1 . Z) ;

return (pt1 − c_cente r) . Length ;
}
double aS lope = yDelta_a / xDelta_a ;
i f (Math . Abs (aS lope − bS lope) <= 0.000000001)
{

No I n t e r s e c t i o n = true ;
c_cente r = Gene r a lVec to r . Zero ;
return −1;

}
va r mmX = (aS lope ∗ bS lope ∗ (pt1 .Y − pt3 .Y) + bSlope ∗ (pt1 .X + pt2 .X)

− aS lope ∗ (pt2 .X + pt3 .X)) / (2 ∗ (bS lope − aS lope)) ;
va r mmY = −1 ∗ (mmX − (pt1 .X + pt2 .X) / 2) / aS lope + (pt1 .Y + pt2 .Y) / 2 ;
va r mmZ = pt1 . Z ;
c_cente r = Gene r a lVec to r . C a r t e s i a n (mmX, mmY, mmZ) ;
return (pt1 − c_cente r) . Length ;

}
pub l i c void Ar cCa l c u l a t e ()
{

i f (_SecondPoint == n u l l) return ;
_Radius = Ca l cCen t e r (out Cente r) ;
i f (_Radius > −1)
{

_Centro id . Cente r = Cente r ;
UpVector = _Centro id . Cente r + Gene r a lVec to r . C a r t e s i a n (0 , 0 , 1) ;
_ArcPoints = new L i s t <Gene ra lVec to r >(_segments) ;
L i n e cL1 = new L ine (Center , _F i r s tPo i n t . Cente r) ;
L i n e rL = new L ine (Center , _SecondPoint . Cente r) ;
L i n e cL2 = new L ine (Center , _Thi rdPo int . Cente r) ;
L i n e L12 = new L ine (_F i r s tPo i n t . Center , _SecondPoint . Cente r) ;
L i n e L23 = new L ine (_SecondPoint . Center , _Thi rdPo int . Cente r) ;
L i n e L13 = new L ine (_F i r s tPo i n t . Center , _Thi rdPo int . Cente r) ;
Gene r a lVec to r p o s i t i v e V e c t o r = L12 . L i n eVec to r . C ros sProduct (L23 . L i n eVec to r) ;
va r xax = Gene r a lVec to r . X_Axis ;
Re f e r en c ePo i n tAng l e = Math . Acos (cL1 . L i n eVec to r . Norma l i ze () . Cos ineAng l e (xax)) ;
i f (cL1 . L i n eVec to r .Y < 0) Re f e r en c ePo i n tAng l e = −1 ∗ Re f e r en c ePo i n tAng l e ;
Angle A1 = Math . Acos

(cL1 . L i n eVec to r . Norma l i ze () . Cos ineAng l e (rL . L i n eVec to r . Norma l i ze ())) ;
Angle A2 = Math . Acos

(rL . L i n eVec to r . Norma l i ze () . Cos ineAng l e (cL2 . L i n eVec to r . Norma l i ze ())) ;
va r h1 = cL1 . L i n eVec to r . Norma l i ze () . C ros sProduc t (rL . L i n eVec to r . Norma l i ze ()) ;
va r h2 = rL . L i n eVec to r . Norma l i ze () . C ros sProduc t (cL2 . L i n eVec to r . Norma l i ze ()) ;
va r hhc = h1 . Cos ineAng l e (h2) ;
Angle B1 = A1 ;
Angle B2 = A2 ;
i f (hhc < 0)

185

{
i f (A1 > A2) B1 = (Angle . FromDegrees (360) − A1) ;
e l s e B2 = Angle . FromDegrees (360) − A2 ;

}
_ArcAngle = B1 + B2 ;
Ax i s a x i s = Ax i s . L i n eAx i s (Center , Cente r + Gene r a lVec to r . Z_Axis) ;
// compare the p o s i t i v e v e c t o r w i th the z a x i s
// (t h i s shou l d be the p l an normal we a r e drawing on)
va r o r y a ng l e = p o s i t i v e V e c t o r . Cos ineAng l e (Gene r a lVec to r . Z_Axis) ;
i f (o r y a ng l e <= 0)
{

_ArcAngle = _ArcAngle ∗ −1;
}
va r p o i n t s = a x i s . Revo l ve (_F i r s tPo i n t . Center , _ArcAngle , _segments) ;
_ArcPoints . AddRange (p o i n t s) ;
N o I n t e r s e c t i o n = f a l s e ;

}
e l s e
{

No I n t e r s e c t i o n = true ;
}

}
}

B.4.7 Quadrilateral Space

The Quadrilateral Space class is the corner stone type in making grids. Basically domain area
is divided into partitions using quadrilateral spaces, then each space is gridded by selecting
the four points of the quadrilateral space. The program will connect these spaces together
and will specify the neibourhood cells.

This object has four sides which are composed of four Bezier Curves. Corners of these
objects are space points, which in turn indicates that the space point is shared between two
bezier curves. Moreover, when discovering the neihbour cells, the program algorithm depend
on corner cells to know the other shared curves, and if they are belonging to other quadratic
cells.

The usage of curved sides in quadratic cell, allow the representation of any shape that
can be morphed between rectangle and cirlce. The shape can be adjusted and the homotopy
between corresponding sides can be calculated.

B.4.7.1 Quadrilateral Space Grid

The Quadrilateral Space Grid is an inner type that represents the lines of the grid in the
Quadrilateral Space object. This object can be used to obtain the quadrilateral cells from
the grid with its coordinates.

186

B.4.8 Quadrilateral Cell Element

This type is a Two-Dimensional representation to the quadrilateral cell, with its four space
points. The type contain the mathematical representation of quadrilateral object.

B.4.9 Hexahedron Cell Element

This type is a Three-Dimensional representation that contains 8 space points, with 6 faces.
The type also contains the functionality of discovering the neighbour cells on the faces by
checking for the space points shared owners. This way we can write any algorithm that goes
from cell to cell without breaking the continuity.

187

APPENDIX C

PROGRAM LISTINGS OF IMPORTANT ALGORITHMS

C.1 CURVE ALGORITHMS

C.1.1 Approximation of Circular Arc to Bezier Curve

Obtaining Tangent Equations It is known that Tangent is always perpendicular to the
Radius vector

m = ya − yc
xa − xc

Tangent Slope as a negative reciprocal is obtained by

mt = −1
(1
m

)

the tangents equation may be written by

y = mx+ b

hence the final b constant for tangent is

b = ya −mtxa

Specifiying Tangent Orientation To keep consistency with the smaller angle between
two selected points we get the intersection of the two tangents

mtP2x+ bP2 = mtP1x+ bP1

hence we obtain a value for x
this value is reused in constructing two tangents line equations with the desired orienta-

tion.

189

Obtaining the P3 and P2 Coordinates The coordinates of points are then calculated
based on the testing length g

xP = g · i

yp = g · j

dv = (2 ∗ Math . PI ∗ Rad ius)/300 ;
whi le ((1 − dLR) <= 0 .99)
{

P2 = Bigge rTangentL ine . GetPoint_ByLength (TestLength) ;
P3 = Sma l l e rTange tL i ne . GetPoint_ByLength (TestLength) ;
TestCurve = new Curve (P1 , P2 , P3 , P4) ;

// Get the l e n g t h d i f f e r e n c e between cu r ve c e n t e r and a r c c e n t e r p o i n t
dL = (ArcCente rPo in t − TestCurve . Execute (0 . 5)) . Ca r t e s i a nLeng th ;
dLR = dL / Rad ius ;

i f (dv < 1e−3) break ; // I n ca se o f too s m a l l i n c r ement v a l u e
}

dL should be decreased in every iteration (a special treatment for the increment value
has been added to the final algorithm that permits of adjusting ∆v.

C.2 GRIDDING ALGORITHMS

This section lists the important algorithms and program listings in the Gridding of Quadri-
lateral Shapes.

C.2.1 Homotopy Between Two Opposite Curves in Quadrilateral
Shape

pub l i c Curve Ad ju s t edCurveBetweenF i r s tAndTh i rdCurve s (double t)
{

// f i r s t and t h i r d cu r ve shou l d be i n the same s en s e to ge t a c o r r e c t b ehav i ou r
i f (F i r s t S i d eCu r v eEqua t i o n == n u l l)
{

i f (C0310 | C0313 | C3000 | C3300)
{

F i r s t S i d eCu r v eEqua t i o n = S i d e s [0] . GetCurve () ;

190

}
e l s e
{

// a l l o the o p t i o n s a r e r e v e r e s e d
F i r s t S i d eCu r v eEqua t i o n = S i d e s [0] . GetReve r sedCurve () ;

}
i f (C2313 | C2310 | C2033 | C2030)

Th i rdS ideCu rveEqua t i on = S i d e s [2] . GetCurve () ;
e l s e

Th i rdS ideCu rveEqua t i on = S i d e s [2] . GetRever sedCurve () ;
}

Curve c = F i r s t S i d eCu r v eEqua t i o n . HomotopyCurve (Th i rdS ideCurveEquat i on , t) ;
// f o u r t h cu r ve to second cu r ve
// 0313 | 0013 | 2010 | 2310
i f (C0313 | C0013 | C2010 | C2310)
{

// −ve s en s e
c [3] = S i d e s [1] . Execu t eGene ra lCu rveEqua t i on (1 − t) ;

}
e l s e
{

c [3] = S i d e s [1] . Execu t eGene ra lCu rveEqua t i on (t) ;
}

// 3300 | 3303 | 2030 | 2330
i f (C3300 | C3303 | C2030 | C2330)
{

c [0] = S i d e s [3] . Execu t eGene ra lCu rveEqua t i on (1 − t) ;
}
e l s e
{

c [0] = S i d e s [3] . Execu t eGene ra lCu rveEqua t i on (t) ;
}
return c ;

}

C.2.2 Concentration Stretching Function

double Geometr i cSt retchM (i n t s t e p)
{

/∗
l e n g t h = sum of the s e r i e s == a∗((1− r ^n)/(1− r))
r : base (our paramete r)
n : number o f g r i d l i n e s (g i v en)
c a l c u l a t e a
then c a l c u l a t e the sum to

∗/
i n t n = _Cells_M_Count ;

191

double r = Gr idQuadCe l l . MFactor ;
i f (r == 1 | | r == 0) return UniformStretchM (s t ep) ;
// 1 = a ∗((1− r ^n)/(1− r))
// a = 1/((1− r ^n)/(1− r))
// s [n] . . > ar ^n
double a = 1 .0 / ((1 . 0 − Math . Pow(r , n)) / (1 . 0 − r)) ;
double t o t a l = 0 . 0 ;
f o r (i n t i = 0 ; i < s t ep ; i++)
{

t o t a l = t o t a l + (a ∗ Math . Pow(r , i)) ;
}
return t o t a l / 1 ;

}

double Geometr icDoub leStretchM (i n t s t e p)
{

// make the expan s i on on f i r s t h a l f and c o n t r a c t i o n on second h a l f
i n t n_A = _Cells_M_Count / 2 ;
// f i r s t h a l f
i n t n_B = _Cells_M_Count − n_A ;
// second h a l f
double r = Gr idQuadCe l l . MFactor ;
i f (r == 1 | | r == 0) return UniformStretchM (s t ep) ;
// 1 = a ∗((1− r ^n)/(1− r))
// a = 1/((1− r ^n)/(1− r))
// s [n] . . > ar ^n
double r_A = r ;
double r_B = 1 / r ;
double a_A = 1.0 / ((1 . 0 − Math . Pow(r_A , n_A)) / (1 . 0 − r_A)) ;
double a_B = 1.0 / ((1 . 0 − Math . Pow(r_B , n_B)) / (1 . 0 − r_B)) ;
double tota l_A = 0 . 0 ;
double tota l_B = 0 . 0 ;
i n t b_i = 0 ;
// d i f f e r e n t i nd ex f o r the second h a l f
f o r (i n t i = 0 ; i < s t ep ; i++)
{

i f (i < n_A)
{

tota l_A = tota l_A + (a_A ∗ Math . Pow(r_A , i)) ;
}
e l s e
{

tota l_B = tota l_B + (a_B ∗ Math . Pow(r_B , b_i)) ;
b_i++;

}
}
double t o t a l = tota l_A + tota l_B ;
return t o t a l / 2 ;

}

192

C.2.3 Senses Coding Listing

pub l i c bool C0310 { get { return S i d e s [0] [3] . Cente r . Equa l s (S i d e s [1] [0] . Cente r) ; } }
pub l i c bool C0313 { get { return S i d e s [0] [3] . Cente r . Equa l s (S i d e s [1] [3] . Cente r) ; } }
pub l i c bool C0013 { get { return S i d e s [0] [0] . Cente r . Equa l s (S i d e s [1] [3] . Cente r) ; } }
pub l i c bool C0010 { get { return S i d e s [0] [0] . Cente r . Equa l s (S i d e s [1] [0] . Cente r) ; } }
pub l i c bool C3000 { get { return S i d e s [3] [0] . Cente r . Equa l s (S i d e s [0] [0] . Cente r) ; } }
pub l i c bool C3300 { get { return S i d e s [3] [3] . Cente r . Equa l s (S i d e s [0] [0] . Cente r) ; } }
pub l i c bool C3303 { get { return S i d e s [3] [3] . Cente r . Equa l s (S i d e s [0] [3] . Cente r) ; } }
pub l i c bool C3003 { get { return S i d e s [3] [0] . Cente r . Equa l s (S i d e s [0] [3] . Cente r) ; } }
pub l i c bool C2313 { get { return S i d e s [2] [3] . Cente r . Equa l s (S i d e s [1] [3] . Cente r) ; } }
pub l i c bool C2310 { get { return S i d e s [2] [3] . Cente r . Equa l s (S i d e s [1] [0] . Cente r) ; } }
pub l i c bool C2010 { get { return S i d e s [2] [0] . Cente r . Equa l s (S i d e s [1] [0] . Cente r) ; } }
pub l i c bool C2013 { get { return S i d e s [2] [0] . Cente r . Equa l s (S i d e s [1] [3] . Cente r) ; } }
pub l i c bool C2033 { get { return S i d e s [2] [0] . Cente r . Equa l s (S i d e s [3] [3] . Cente r) ; } }
pub l i c bool C2030 { get { return S i d e s [2] [0] . Cente r . Equa l s (S i d e s [3] [0] . Cente r) ; } }
pub l i c bool C2333 { get { return S i d e s [2] [3] . Cente r . Equa l s (S i d e s [3] [3] . Cente r) ; } }
pub l i c bool C2330 { get { return S i d e s [2] [3] . Cente r . Equa l s (S i d e s [3] [0] . Cente r) ; } }

C.2.4 Neighbour Quadrilateral Shapes Discovery

pub l i c QuadCel l G e t S i d eC e l l (i n t i)
{

va r s = S i d e s [i] ;
v a r c e l l s = from o i n s . Owners

where o . GetType () == typeof (QuadCel l) && o . I d != t h i s . I d
s e l e c t (QuadCel l) o ;

va r c e l l = c e l l s . F i r s tO rD e f a u l t () ;
return c e l l ;

}

C.2.5 Grouping Algorithm

The grouping algorithm takes all the neihbor cells and adding them into a new instance of
QuadCellGroup object. The code used to make this grouping is as follow:

pub l i c s t a t i c QuadCel lGroup D i s c o v e rCe l lG r oup (QuadCel l qc)
{

QuadCel lGroup ta rge tGroup = new QuadCel lGroup () ;
t a rge tGroup . AddCe l l (qc) ;
D i s cove r_A l lCe l l S i d e_On (qc , t a rge tGroup) ;
t a rge tGroup . Re f r e s hCen t e r () ;
return t a rge tGroup ;

}

pr i va te s t a t i c void Di s cove r_A l lCe l l S i d e_On (QuadCel l qc , QuadCel lGroup ta rge tGroup)

193

{
va r sc1 = qc . G e t S i d eC e l l (0) ;
va r sc2 = qc . G e t S i d eC e l l (1) ;
va r sc3 = qc . G e t S i d eC e l l (2) ;
va r sc4 = qc . G e t S i d eC e l l (3) ;
i f (sc1 != n u l l)
{

i f (! t a rge tGroup . Conta in s (sc1))
{

ta rge tGroup . AddCe l l (sc1) ;
D i s cove r_A l lCe l l S i d e_On (sc1 , t a rge tGroup) ;

}
}
i f (sc2 != n u l l)
{

i f (! t a rge tGroup . Conta in s (sc2))
{

ta rge tGroup . AddCe l l (sc2) ;
D i s cove r_A l lCe l l S i d e_On (sc2 , t a rge tGroup) ;

}
}
i f (sc3 != n u l l)
{

i f (! t a rge tGroup . Conta in s (sc3))
{

ta rge tGroup . AddCe l l (sc3) ;
D i s cove r_A l lCe l l S i d e_On (sc3 , t a rge tGroup) ;

}
}
i f (sc4 != n u l l)
{

i f (! t a rge tGroup . Conta in s (sc4))
{

ta rge tGroup . AddCe l l (sc4) ;
D i s cove r_A l lCe l l S i d e_On (sc4 , t a rge tGroup) ;

}
}

}

The algorithm depends on a recursive discovery which test each side on the quadratic
cell for another cell, if a cell is found, it is stored in the list of discovered cell (if it was not
there before) and it continues like that until all cells behind this cell are consumed and the
new QuadCellGroup object is returned.

The main concept of the gridding process is to divide the 2D space into complete quadratic
cell partitions. This is important to have all the area covered by adjacent quadratic cells.

The first phase of gridding the geometry is to select certain points and connecting them
with lines to form big areas that will serve as an independent big quadratic cells as seen in
Fig. (C.1)

194

Figure C.1: Partial Gridded Geometry

After specifieng the big areas that will serve as independent quadratic shapes, the points
of the connected corners will serve as the information points that connect up to four quadratic
cells, and the gridding the whole cell will affect the neighbor quadratic cells with their points
number on the edge. The fully gridded geometry can be seen in Fig. (C.2).

195

Figure C.2: Fully Gridded Geometry

196

	INTRODUCTION
	BACKGROUND
	Elements of CFD Packages
	Pre-Processor
	Solver
	Post-Processor

	MOTIVATION
	THESIS OBJECTIVES
	THESIS LAYOUT

	REVIEW OF GRID TYPES AND GENERATION TECHNIQUES
	INTRODUCTION
	GRID TYPES AND CLASSIFICATIONS
	Structured Grids
	Coordinate Grids
	Boundary-Fitted Grids
	Shape of Computational Domains
	Stretching Methods
	Structured grid generation overview

	Block Structured Grids
	Unstructured Grids
	Overset (Chimera) Grids
	Hybrid Grids

	AUTOMATIC GRID GENERATION
	Mapping Transformation
	Transfinite Interpolation
	Elliptic Generators
	Hyperbolic Generators

	Grid Superposition
	Geometric Decomposition
	Transformation From Triangular Meshes
	Advancing Front Method

	MESHLESS METHODS
	SUMMARY

	COMPUTATIONAL FLUID DYNAMICS AND COMPUTATIONAL GRIDS
	INTRODUCTION
	THE GOVERNING EQUATIONS
	FINITE VOLUME DESCRITIZATION OF THE GOVERNING EQUATIONS
	THE COMPUTATIONAL GRID
	Desired Properties of Computational Grid

	CONCLUSIONS

	MANIFOLDS AND HOMOTOPY
	INTRODUCTION
	TOPOLOGICAL SPACES
	MANIFOLDS
	HOMOTOPY
	Homotopy of Functions

	BEZIER CURVES
	Generalization
	Linear Bézier Curves
	Quadratic Bézier Curves
	Cubic Bézier Curves

	Cubic Bezier Curve Solution

	TRANFORMATION OF CIRCULAR ARCS INTO BEZIER ARCS
	Analytical Method
	Numerical Method

	CONCLUSIONS

	COMPUTER GRAPHICS PROGRAMMING
	INTRODUCTION
	OpenGL as A State machine
	OpenGL Rendering Pipeline

	GRAPHICAL OBJECT MODEL
	Graphical Model Naming
	Picking Viewport Models
	Models Interactive Operations

	MODEL SNAPPING OPTIONS
	Snapping Options Calculations
	Line Segment
	Circle
	Bezier Curve
	Circular Arc

	CONCLUSIONS

	GRIDDING ALGORITHMS AND OPERATIONS
	INTRODUCTION
	TWO-DIMENSIONAL GRIDDING OPERATIONS
	Linear Gridding
	Homotopy and Gridding Operations
	Enhanced Homotopy Gridding
	Gridding Techniques Comparison
	Contracting / Stretching Function
	Circle Gridding
	Edge Senses and Coding

	CONNECTIVITY BETWEEN QUADRILATERAL SHAPES
	Discovery of Neighbours
	Grouping
	Gridding between Neighbours

	THREE DIMENSIONAL GRIDS
	Extrusion Operation
	Revolve Operation
	Auxilary Operations
	Twisting Operation
	Scaling Operation

	Axisymmetric Operation

	CONCLUSIONS

	PROGRAM STRUCTURE AND CASE STUDIES
	INTRODUCTION
	Program Structure and Layout
	Ribbon Menu Bar
	Operations Area
	Viewport and Models Windows
	Properties Window
	Cell Properties Window
	Grid Properties

	Task Bar Area

	PROGRAM MENUS
	File Menu
	Home Menu
	2D Sketching
	Parametric Sketching
	Air Foil
	Plane Image

	Viewport Menu
	Viewport Movement
	Base Drawing Plane

	2D Gridding Menu
	Gridding Sequence

	Extrusion Menu
	Basic Extrusion Processes
	Profile Extrusion
	Equation Extrusion

	Revolving Menu
	Basic Operations
	Axisymmetric Revolve

	Boundaries Menu
	Post-Gridding Menu

	CASE STUDIES
	Simple Cases
	Rectangular Duct with Baffle and 90 Bend
	Straight Pipe I
	Straight Pipe II
	S Shape Pipe

	Composite Cases
	Axisymmetric Sudden Expansion-Contraction
	Bank of Tubes
	Hydro Cyclone
	Internal Combusion Engine Poppet Valve
	Composite Valve
	Pump rotor

	EXPORTING GRID FILE

	CONCLUSIONS AND RECOMMENDATIONS
	CONCLUSIONS
	RECOMMENDATIONS FOR FUTURE WORK

	LIST OF REFERENCES
	REVIEW OF DIFFERENTIAL AND INTEGRAL CALCULUS IN GENERAL CURVILINEAR COORDINATES
	INTRODUCTION
	CURVILINEAR COORDINATES
	Base Vectors
	Transformation Equation
	Covariant Base Vectors
	Contravariant Base Vectors
	Jacobian Matrix
	Gradient Operator in General Curvilinear Coordinates
	Representaion of Vector Components

	Metric Tensor
	Transformation with Metric Tensors

	Christoffel Symbols
	Second Kind Christoffel Symbols
	Covariant Derivative

	Div, Gradient, and Curl

	ORTHOGONAL CURVILINEAR COORDINATES
	Covariant Basis
	Contravariant Basis
	Dot Product
	Cross Product
	Differentiation
	Differential Operators

	GEOMETRY AND OBJECT ORIENTED PROGRAMMING
	INTRODUCTION
	OBJECT ORIENTATION CONCEPTS
	Objects
	Classes
	Inheritance
	Polymorphism
	Operator Overloading

	GEOMETRICAL AND MATHEMATICAL TYPES
	General Vector
	General Vector Properties
	General Vector Overloaded Operators

	Plane
	Quadrilateral
	Angle
	Quaternion
	Matrix

	GRAPHICAL MODELING CLASSES
	Space Point
	Space Line
	Line Strip
	Space Bezier Curve
	Space Circle
	Space Arc
	Quadrilateral Space
	Quadrilateral Space Grid

	Quadrilateral Cell Element
	Hexahedron Cell Element

	PROGRAM LISTINGS OF IMPORTANT ALGORITHMS
	CURVE ALGORITHMS
	Approximation of Circular Arc to Bezier Curve

	GRIDDING ALGORITHMS
	Homotopy Between Two Opposite Curves in Quadrilateral Shape
	Concentration Stretching Function
	Senses Coding Listing
	Neighbour Quadrilateral Shapes Discovery
	Grouping Algorithm

